Answer:
Vf= 7.29 m/s
Explanation:
Two force act on the object:
1) Gravity
2) Air resistance
Upward motion:
Initial velocity = Vi= 10 m/s
Final velocity = Vf= 0 m/s
Gravity acting downward = g = -9.8 m/s²
Air resistance acting downward = a₁ = - 3 m/s²
Net acceleration = a = -(g + a₁ ) = - ( 9.8 + 3 ) = - 12.8 m/s²
( Acceleration is consider negative if it is in opposite direction of velocity )
Now
2as = Vf² - Vi²
⇒ 2 * (-12.8) *s = 0 - 10²
⇒-25.6 *s = -100
⇒ s = 100/ 25.6
⇒ s = 3.9 m
Downward motion:
Vi= 0 m/s
s = 3.9 m
Gravity acting downward = g = 9.8 m/s²
Air resistance acting upward = a₁ = - 3 m/s²
Net acceleration = a = g - a₁ = 9.8 - 3 = 6.8 m/s²
Now
2as = Vf² - Vi²
⇒ 2 * 6.8 * 3.9 = Vf² - 0
⇒ Vf² = 53. 125
⇒ Vf= 7.29 m/s
I think it might be a gravitational pull
Answer:
2.210N
Explanation:
Workdone = Force x distance
Distance = 38m , Workdone = 84J
Hence 84J = Force x 38m
Force = 84J / 38m
Force = 2.210N =2.2N
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The most common use of gravitational potential energy is for an object near the surface of the Earth where the gravitational acceleration can be assumed to be constant at about 9.8 m/s2.
Answer:
Resistance = 3.35*
Ω
Explanation:
Since resistance R = ρ
whereas 
resistivity is given for two ends. At the left end resistivity is
whereas x at the left end will be 0 as distance is zero. Thus

At the right end x will be equal to the length of the rod, so 
Thus resistance will be R = ρ
where A = π 
so,
