Explanation:
As a neutral lithium atom contains 3 protons and its elemental charge is given as
. Hence, we will calculate its number of moles as follows.
Moles = 
= 
= 100 mol
According to mole concept, there are
atoms present in 1 mole. So, in 100 mol we will calculate the number of atoms as follows.
No. of atoms = 
=
atoms
Since, it is given that charge on 1 atom is as follows.

= 
Therefore, charge present on
atoms will be calculated as follows.

Thus, we can conclude that a positive charge of
is in 0.7 kg of lithium.
Answer:
Vf = 1.22 mL
Explanation:
If we assume that the pressure is constant and the number of moles does not change, we can say that the volume of the gas is modified in a directly ratio, to the Absolute Temperature.
Let's convert the values:
91°C + 273 = 364K
0.9°C + 273 = 273.9K
Volume decreases if the temperature is decreases
Volume increases if the T° increases
V₁ / T₁ = V₂ / T₂ → 1.63mL /364K = V₂ / 273.9K
V₂ = (1.63mL /364K) . 273.9K → 1.22 mL
51.86 grams would be in the container.
One ounce is an equivalent of 28.34 grams, so times that by 12.2
.
12.2 * 28.34 = 345.75.
Put the percentage into decimal form, so 15% would now be 0.15.
0.15 * 345.75 = 51.86.
To determine the amount of a certain element in a compound, we use the ratio of the elements from the compound. We calculate is follows:
45.0 g CCl4 ( 1 mol CCl4 / 153.82 g CCl4 ) ( 1 mol C / 1 mol CCl4 ) ( 12.01 g C / 1 mol C ) = 3.5135 g carbon present
Hope this answers the question. Have a nice day.
Answer:
7.2L
Explanation:
The details of the solution are found in the answer. The balanced stoichiometric equation is first written and the volumes on the left and right hand sides dilligiently compared and calculations are made based on simple comparisons as show.