To find the tangent plane to the surface f(x,y,z)=0 at a point (X,Y,Z) we use the following method:
<span>Calculate grad f = (f_x, f_y, f_z). The normal vector to the surface at the point (X,Y,Z) is grad f(X,Y,Z). The equation of a plane with normal vector n which passes through the point p is (r-p).n=0, where r=(x,y,z) is the position vector. So the equation of the tangent plane to the surface through the point (X,Y,Z) is ((x,y,z)-(X,Y,Z)).grad f(X,Y,Z)=0. </span>
<span>Now in your case we have f(x,y,z)=y-x^2-z^2, so grad f=(-2x,1,-2z), and the equation of the tangent plane at the point (X,Y,Z) is </span>
<span>((x,y,z)-(X,Y,Z)).(-2X,1,-2Z)=0, </span>
<span>that is </span>
<span>-2X(x-X)+1(y-Y)-2Z(z-Z)=0, </span>
<span>i.e. </span>
<span>-2Xx+y-2Zz = -2X^2+Y-2Z^2. (1) </span>
<span>Now compare this equation with the plane </span>
<span>x + 2y + 3z = 1. (2) </span>
<span>The two planes a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2 are parallel when (a_1,b_1,c_1) is a multiple of (a_2,b_2,c_2). So the two planes (1),(2) are parallel when (-2X,1,-2Z) is a multiple of (1,2,3), and we have </span>
<span>(-2X,1,-2Z)=1/2(1,2,3) </span>
<span>for X=-1/4 and Z=-3/4. On the paraboloid the corresponding y coordinate is Y=X^2+Z^2=1^4+9^4=5/2. </span>
<span>So the tangent plane to the given paraboloid at the point (-1/4,5/2,-3/4) is parallel to the given plane.</span>
The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.
The motion of planets is separate to the motion of stars. Like everything in the sky, they rise in the east, and set in the west, because of the earth's rotation. But night by night, their position at a given time changes because of their orbit around the sun.