To find the tangent plane to the surface f(x,y,z)=0 at a point (X,Y,Z) we use the following method:
<span>Calculate grad f = (f_x, f_y, f_z). The normal vector to the surface at the point (X,Y,Z) is grad f(X,Y,Z). The equation of a plane with normal vector n which passes through the point p is (r-p).n=0, where r=(x,y,z) is the position vector. So the equation of the tangent plane to the surface through the point (X,Y,Z) is ((x,y,z)-(X,Y,Z)).grad f(X,Y,Z)=0. </span>
<span>Now in your case we have f(x,y,z)=y-x^2-z^2, so grad f=(-2x,1,-2z), and the equation of the tangent plane at the point (X,Y,Z) is </span>
<span>((x,y,z)-(X,Y,Z)).(-2X,1,-2Z)=0, </span>
<span>that is </span>
<span>-2X(x-X)+1(y-Y)-2Z(z-Z)=0, </span>
<span>i.e. </span>
<span>-2Xx+y-2Zz = -2X^2+Y-2Z^2. (1) </span>
<span>Now compare this equation with the plane </span>
<span>x + 2y + 3z = 1. (2) </span>
<span>The two planes a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2 are parallel when (a_1,b_1,c_1) is a multiple of (a_2,b_2,c_2). So the two planes (1),(2) are parallel when (-2X,1,-2Z) is a multiple of (1,2,3), and we have </span>
<span>(-2X,1,-2Z)=1/2(1,2,3) </span>
<span>for X=-1/4 and Z=-3/4. On the paraboloid the corresponding y coordinate is Y=X^2+Z^2=1^4+9^4=5/2. </span>
<span>So the tangent plane to the given paraboloid at the point (-1/4,5/2,-3/4) is parallel to the given plane.</span>
We know that in an inelastic collision, after the collision, both objects move with one common speed. Let it is given by V. Using the conservation of momentum to find it as :
V = 7.2 m/s
Let h is the height reached by the combined balls of putty rise above the collision point. Using the conservation of energy as :
h = 2.64 meters
So, the height reached by the combined mass is 2.64 meters. Hence, this is the required solution.
Doubling the amounts of both ammonia and ammonium chloride is the action
that will most likely strengthen the buffering capacity of a solution that contains
equal amounts of ammonia and ammonium chloride, and is buffered at a pH of 9.25.