To find the tangent plane to the surface f(x,y,z)=0 at a point (X,Y,Z) we use the following method:
<span>Calculate grad f = (f_x, f_y, f_z). The normal vector to the surface at the point (X,Y,Z) is grad f(X,Y,Z). The equation of a plane with normal vector n which passes through the point p is (r-p).n=0, where r=(x,y,z) is the position vector. So the equation of the tangent plane to the surface through the point (X,Y,Z) is ((x,y,z)-(X,Y,Z)).grad f(X,Y,Z)=0. </span>
<span>Now in your case we have f(x,y,z)=y-x^2-z^2, so grad f=(-2x,1,-2z), and the equation of the tangent plane at the point (X,Y,Z) is </span>
<span>((x,y,z)-(X,Y,Z)).(-2X,1,-2Z)=0, </span>
<span>that is </span>
<span>-2X(x-X)+1(y-Y)-2Z(z-Z)=0, </span>
<span>i.e. </span>
<span>-2Xx+y-2Zz = -2X^2+Y-2Z^2. (1) </span>
<span>Now compare this equation with the plane </span>
<span>x + 2y + 3z = 1. (2) </span>
<span>The two planes a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2 are parallel when (a_1,b_1,c_1) is a multiple of (a_2,b_2,c_2). So the two planes (1),(2) are parallel when (-2X,1,-2Z) is a multiple of (1,2,3), and we have </span>
<span>(-2X,1,-2Z)=1/2(1,2,3) </span>
<span>for X=-1/4 and Z=-3/4. On the paraboloid the corresponding y coordinate is Y=X^2+Z^2=1^4+9^4=5/2. </span>
<span>So the tangent plane to the given paraboloid at the point (-1/4,5/2,-3/4) is parallel to the given plane.</span>
I may be wrong, but I think you're trying to say that Planet-A is <em>3 times as far from the sun</em> as Planet-C is.
If that's the real question, then the answer is that the period of Orbit-A is about<em> 5.2</em> times as long as the period of Orbit-C .
Orbital period ≈ (proportional to) (the orbital distance) ^ 3/2 power.
This was empirically demonstrated about 350 years ago by Johannes and his brilliant Kepple, and derived about 100 years later by Newton from his formula for the forces of gravity.
The kinetic energy of the bullet is given by the following formula:
K = (1/2) m * v^2
With
m = 16.1 g = 1.61 x 10^-2 kg
v = 730 m/s
K = 4 289.8 J
b)
the work-kinetic energy theorem states that the work done on a system is the same as the differnce in kinetic energy of the same. Since the initial state of the bullet was at zero velocity (it was at rest) Ki = 0, therefore:
W = ΔK = Kf - Ki = 4 289.8 J
c)
The work done by a force is given by the line intergarl of the force along the trayectory of the system (in this case the bullet).
If we consider a constant force (and average net force) directed along the trayectory of the bullet, the work and the force will be realted by:
W = F * L
Where F is the net force and L is the length of the barrel, that is:
F = (4 289.8 J) / (64.8 cm) = (4 289.8 Nm) / (0.648 m) = 6620.1 N
d)
The acceleration can be found dividing the force by the mass:
a = F/m = (6620.1 N) /(16.1 g) = 411 186.3 m/s^2
e)
The force will have a magnitude equal to c) and direction along the barrel towards the exit
Gravity pulls on the object in the downward direction. The normal force to the inclined plane points in a direction perpendicular to the surface of the plane. Then for the object to be at rest, the frictional force must act parallel to the inclined plane, pointing in the upward direction.