To find the tangent plane to the surface f(x,y,z)=0 at a point (X,Y,Z) we use the following method:
<span>Calculate grad f = (f_x, f_y, f_z). The normal vector to the surface at the point (X,Y,Z) is grad f(X,Y,Z). The equation of a plane with normal vector n which passes through the point p is (r-p).n=0, where r=(x,y,z) is the position vector. So the equation of the tangent plane to the surface through the point (X,Y,Z) is ((x,y,z)-(X,Y,Z)).grad f(X,Y,Z)=0. </span>
<span>Now in your case we have f(x,y,z)=y-x^2-z^2, so grad f=(-2x,1,-2z), and the equation of the tangent plane at the point (X,Y,Z) is </span>
<span>((x,y,z)-(X,Y,Z)).(-2X,1,-2Z)=0, </span>
<span>that is </span>
<span>-2X(x-X)+1(y-Y)-2Z(z-Z)=0, </span>
<span>i.e. </span>
<span>-2Xx+y-2Zz = -2X^2+Y-2Z^2. (1) </span>
<span>Now compare this equation with the plane </span>
<span>x + 2y + 3z = 1. (2) </span>
<span>The two planes a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2 are parallel when (a_1,b_1,c_1) is a multiple of (a_2,b_2,c_2). So the two planes (1),(2) are parallel when (-2X,1,-2Z) is a multiple of (1,2,3), and we have </span>
<span>(-2X,1,-2Z)=1/2(1,2,3) </span>
<span>for X=-1/4 and Z=-3/4. On the paraboloid the corresponding y coordinate is Y=X^2+Z^2=1^4+9^4=5/2. </span>
<span>So the tangent plane to the given paraboloid at the point (-1/4,5/2,-3/4) is parallel to the given plane.</span>
I think the correct answer would be that because electromagnets are powerful and can be turned off and on anytime. Electromagnet is a magnet in which the magnetic field is made by the electric current that is induced to the system.
These energy exchanges are not changes in kinetic energy. They are changes in bonding energy between the molecules. If heat is coming into a substance during a phase change, then this energy is used to break the bonds between the molecules of the substance. The example we will use here is ice melting into water.