Answer:
Option C. 16.6 m/s
Explanation:
To round this 16.558 m/s to 3sf, we need to count the number beginning from 1. When we get to the 3rd number( ie 5), we'll examine the fourth number(i.e 5)to see if it less than five or greater. If it less than five, then we'll discard it. But if it five or greater, we'll approximate it and add it to the 3rd number.
So.
16.558 m/s = 16.6m/s to 3sf
Answer:
2.26 s
Explanation:
Let's take down to be positive.
Given (in the y direction):
Δy = 25 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
25 m = (0 m/s) t + ½ (9.8 m/s²) t²
25 = 4.9t²
t = 2.26 s
If the ball instead had an initial horizontal velocity of 5 m/s, its initial vertical velocity is still 0 m/s. So the time to fall is still 2.26 s.
We know that a wave is a disturbance that transfers energy through matter or space There are two main types of waves: Mechanical and Electromagnetic. Water waves are mechanical. A mechanical wave is an oscillation of matter to transfers energy, but you always need a medium (substance such as: solid, liquid, gas, plasma) to transport it. The medium for water waves is, in fact, the water. For example, ripple in water is a surface wave. On the other hand, electromagnetic waves don't need a medium to transport, they can do it through the empty space. Then, this is the major characteristic that makes these two types of waves different.
<h3>Answer;</h3>
<em>B.)neither longitudinal nor transverse</em>
<h3><u>Explanation;</u></h3>
- <em><u>Longitudinal waves</u></em> are waves in which the vibration of particles is parallel to the direction of the wave motion.
- <em><u>Transverse waves</u></em> on the other hand are those waves in which the vibration of particles is perpendicular to the direction of the wave motion.
- In <em><u>surface waves particles in the medium of transmission move in a circular motion.</u></em> Therefore, they are neither transverse waves nor longitudinal waves.