Answer:
32 m and -2.4 m/s
Explanation:
Given:
v₀ = 25 m/s
t = 2.8 s
a = -9.8 m/s²
Find: Δy, v
Δy = v₀ t + ½ at²
Δy = (25 m/s) (2.8 s) + ½ (-9.8 m/s²) (2.8 s)²
Δy = 31.6 m
v = at + v₀
v = (-9.8 m/s²) (2.8 s) + 25 m/s
v = -2.44 m/s
Rounded to two significant figures, the bullet reaches a height of 32 m and a velocity of -2.4 m/s.
Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
Answer: A) highly mobile electrons in the valence shell
Explanation: conductivity in metals is a result of the movement of electrically charged particles—the electrons. These free electrons also known as valence electrons are free to move, and as a result they can travel through the lattice that forms the physical structure of a metal. The presence of valence electrons determines a metal's conductivity. However, several other factors can affect the conductivity of a metal such as impurities, temperature, magnetic fields etc.
Nice couch lol
and aluminum I think