The common formula for work is:
Work = force x displacement
W = F x d
Answer:
it can be calculated by measuring the final distance away from a point, and then subtracting the initial distance
It acquires a positive electric charge.
The emf induced = B*l*v where B is the flux density, l the length of the conductor and v the velocity of the conductor. In the given case B = 0.035 N/amp.meter, l = 0.86 and v = 6 m/sec
emf = 0.035*0.86*6 = 0.1806 v ≈ 0.18 v
choice: D
M₁ = mass of planet #1
M₂ = mass of planet #2
M = total mass
R₁ = radius of planet #1
R₂ = radius of planet #2
d₁ = initial distance between planet centers
d₂ = final distance between planet centers
a = semimajor axis of plunge orbit
v₁ = relative speed of approach at distance d₁
v₂ = relative speed of approach at distance d₂
M₁ = M₂ = 1.8986e27 kilograms
M = M₁ + M₂ = 3.7972e27 kg
G = 6.6742e-11 m³ kg⁻¹ sec⁻²
GM = 2.5343e17 m³ sec⁻²
d₁ = 1.4e11 meters
a = d₁/2 = 7e10 meters
R₁ = R₂ = 7.1492e7 meters
d₂ = R₁ + R₂ = 1.42984e8 meters
v₁ = 0
v₂ = √[GM(2/d₂−1/a)]
<span>
v₂ = 59508.4 m/s </span>
<span>
The time to fall is 1337.7 days
.</span>I hope my answer has come to your help. Thank you for posting your question here in Brainly.