This is an application of Le Chatlier's principle: What happens when we add a reagent to one side of an equation? The reaction will shift to the other side. So heat is a reactant and we're adding more of it, the reaction must therefore, shift to the right ( or the products side).
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g
Answer:
Explanation:
91.4
grams
Explanation:
C
=
m
o
l
v
o
l
u
m
e
2.45
M
=
m
o
l
0.5
L
2.45
M
⋅
0.5
L
=
m
o
l
m
o
l
=
1.225
Convert no. of moles to grams using the atomic mass of K + Cl
1.225
m
o
l
⋅
(
39.1
+
35.5
)
g
m
o
l
1.225
m
o
l
⋅
74.6
g
m
o
l
=
1.225
⋅
74.6
g
=
91.4
g
The type of reaction that occurs in the core of a nuclear reactor in a power plant is the fission reaction where the nucleus of an atom is split into smaller nucleus. Along with this splitting, high amounts of energy is being produced. This energy is used to supply power to people.