Definition:
Speed = (distance covered) / (time to cover the distance).
Speed in the first example = (10 meters) / (1 second) = 10 m/s .
Speed in the second example = (20 meters) / (2 seconds) = 10 m/s.
Apparently, it is. This little exercise demonstrates it.
A wave with a period of 1⁄3 second has a frequency of D. 3 Hz. To
calculate this we will use the formula that represents the correlation
between a frequency (f) and a time period (T): T = 1/f. Or: f = 1/T. The
unit for the time period is second "s" while the unit for frequency is
Hertz "Hz" (=1/s). We know that T = 1/3 s. That means that f = 1/(1/3s) =
3 1/s = 3 Hz.
Particles vibrate parallel to the direction the sound travels. It's a longitudinal wave.
So, there should be two forces acting on the refrigerator: the applied force and the friction force.
The question mentioned that the friction force was set to zero, so the only effective force now would be the applied force.
We have an applied force of 400 N to the right, this means that:
<span>The magnitude of the net force is 400, directed to the right.</span>
Answer:
14 m/s
Explanation:
The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:

where
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
d = 10.0 m is the distance covered by the book
Substituting data, we find
