Answer:
Explanation:
Remark
This is a second class lever. It is much more efficient than the fishing pole problem. All distances are measured from the pivot in these kinds of questions.
Givens
d1 = 1.5
d2 = ?
m1 = 50 kg
m2 = 30 kg
The lighter child will have to sit further away from the pivot to make the two conditions equal.
Formula
d1*m1 = d2*m2
1.5*50 = d2 * 30
75 = 30 * d2
75/30 = d2
d2 = 2.5
Remark
Notice that the distance is longer for the lighter child. The fact that these are masses and not forces does not matter, but you should take note of it. There is a difference between masses and forces. See the fishing pole problem.
Answer to the multiple Choice question. No motion on this kind of problem means equal moments. The answer is D
Problem 2
1) The wheels are further apart making B more stable. The wider the distance the wheels are apart, the harder it would be to tip the concrete mixer over
2) The center of gravity is lower. The higher the force is the more chance you have of exerting an external force to tip the mixer over.
 
        
             
        
        
        
After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is
       Square root of ( 19.6 M ) .
If M=111 meters, then the speed is <em>46.64 meters per second</em>. 
We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.
        
             
        
        
        
The lowest energy of electron in an infinite well is 1.2*10^-33J.
To find the answer, we have to know more about the infinite well.
<h3>What is the lowest energy of electron in an infinite well?</h3>
- It is given that, the infinite well having a width of 0.050 mm.
- We have the expression for energy of electron in an infinite well as,
                   
                 
- Thus, the lowest energy of electron in an infinite well is,
                 
Thus, we can conclude that, the lowest energy of electron in an infinite well is 1.2*10^-33J.
Learn more about the infinite well here:
brainly.com/question/20317353
#SPJ4
 
        
             
        
        
        
Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law




Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula


Hence, The speed of space station floor is 49.49 m/s.
 
        
             
        
        
        
Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.