The final velocity is 2.7 m/s
Explanation:
We can solve this problem by using the principle of conservation of momentum: in fact, in absence of external forces, the total momentum of the system must be conserved before and after the collision.
Therefore we can write:
where:
is the mass of the putty
is the initial velocity of the putty (we take its direction as positive direction)
is the mass of the ball
is the initial velocity of the ball (at rest)
is the final combined velocity of the two putty+ball
Re-arranging the equation and substituting the values, we find the final combined velocity:
And the positive sign indicates their final direction is the same as the initial direction of the putty.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Magnets facing the same way <span />
Answer:
340 W
Explanation:
Power = change in energy / change in time
P = ΔKE / Δt
P = ½ mv² / Δt
P = ½ (90 kg) (15 m/s)² / (30 s)
P = 337.5 W
Rounded to 2 significant figures, the power is 340 W.
Answer:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Explanation:
Let suppose that shells are not experiencing any effect from non-conservative forces (i.e. friction, air viscosity) and changes in gravitational potential energy are negligible. The explosive force experienced by the shell inside the barrel can be estimated by Work-Energy Theorem, represented by the following formula:
(1)
Where:
- Explosive force, measured in newtons.
- Barrel length, measured in meters.
- Mass of the shell, measured in kilograms.
,
- Initial and final speeds of the shell, measured in meters per second.
If we know that
,
,
and
, then the explosive force experienced by the shell inside the barrel is:

![F = \frac{(1250\,kg)\cdot \left[\left(750\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (15\,m)}](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7B%281250%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%28750%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%7D%7B2%5Ccdot%20%2815%5C%2Cm%29%7D)

The explosive force experienced by the shell inside the barrel is 23437500 newtons.