Answer:
Speed=28.1m/s(to 3s.f.) , Time=2.19s(to 3s.f.)
Explanation:
Time=Distance/Speed
=14.5/6.63
=2.19s(to 3s.f.)
Acceleration=Final Velocity(v)-Initial Velocity(u)/Time
9.81=v-6.63/2.19
v-6.63=21.5
v=28.1m/s
The y-component of the initial velocity vector is zero only in scenarios A and C. The weight/package on either plane inherits a non-zero x-component that matches the plane's horizontal velocity, but with respect to the vertical direction the objects are at rest, and dropping them from a given height doesn't confer them an initial vertical velocity. On the other hand, if the object was thrown upward and allowed to fall, or shot downward by a cannon, then the initial vertical velocity would be non-zero.
In scenario B, the dolphin must have some non-zero y-component of velocity in order to launch itself out of the water, because otherwise it would stay at a fixed depth.
Answer:
ummmmm mmmmm butterflies :)
Explanation:
Answer:
weight = mass×gravity
<h2>stay safe healthy and happy.</h2>