F=m*a=>a=F/m=10000/1267=7.89 m/s²
d=v₀t+a't²/2<=>394.6=112.5*a'=>a'=3.5
a-a'=7.89-3.5=4.39 m/s²
This difference causes friction forces
We apply the second principle of dynamics: vector: F + N + G + Ff = ma (vector vectors, I can not here)
Scalar: Ox: F-Ff = ma
Oy N-mg = 0
Ff = -ma+ F =-1267*7.89+10000=-8869+10000=1131 N
This frictional force (Ff) is opposite to the traction (F)
Mass of an electron = 9.110 x 10⁻³¹ kg.
Mass of a proton = 1.6727 x 10⁻²⁷ kg
∴ mass of a proton/mass of an electron = 1.6727 x 10⁻²⁷ kg/9.110 x 10⁻³¹ kg.
~1836
∴ mass of a proton = 1836 x mass of an electron.
∴ mass of an electron is insignificant to the mass of an atom.
∴mass of an atom = mass of protons + mass of neutrons
efficiency= [useful energy transferred ÷ total energy supply]×100%
So, [5500÷10000]×100%=0.55×100
=55%
The picture isn’t clear so I can’t read the dimensions of the box but I can try my best to guide u through the question.
For part a u need to find the volume of the box as that will equal the volume of sand that can be filled inside.
For this u multiply the height, width and length of the box.
For part b the mass of sand alone will be
=Mass of box + sand - Mass of empty box
=216 - 40
=176 grams
For part c the density of sand can be calculated by the formula
Density= Mass/Volume
So the mass (176g) / volume from part a
For part d u need to know that something will float if it has a lower density than what it is floating in. If the final density of sand that was found in part c is less than the density of gold (19.3 g/cm^3) it will float. Otherwise it will sink.
Hope this helped!
Answer: 5.30m
Explanation:
depth of pool = 3.2 m
i = 67.75°
Using snell's law, we have,
n₁ × sin(i) = n₂ × 2 × sin(r)
n₁ = 1, n₂ =1.33, r= 44.09°
Hence,
Distance of Google from edge if pool is:
2.2 + d×tan(r) = 2.2 + (3.2 × tan(44.09°) =5.30m