Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.
Answer: 343 m/s. The sound wave has a frequency of. 436 Hz. What is the period of the wave? T = = 436 Hz. = 2.29x10-3 s. C. What is the wave's wavelength? To halve
Explanation:
Answer:
beacause it's contracts
Explanation:
when using a large bottomed glass the hot water cools that's why is good to use thin bottomed glass
The best and most correct answer among the choices provided by the question is the first choice, larger.
Rankine is Fahrenheit + 460 , while Kelvin is Celsius + 273. We all know that Fahrenheit has larger number compared to kelvin , thus rankine is much larger.
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
29.2 ft/s
Explanation:
The distance of the light's projection on the wall
y = 13 tan θ
where θ is the light's angle from perpendicular to the wall.
The light completes one rotation every 3 seconds, that is, 2π in 3 seconds,
Angular speed = w = (2π/3)
w = (θ/t)
θ = wt = (2πt/3)
(dθ/dt) = (2π/3)
y = 13 tan θ
(dy/dt) = 13 sec² θ (dθ/dt)
(dy/dt) = 13 sec² θ (2π/3)
(dy/dt) = (26π/3) sec² θ
when θ = 15°
(dy/dt) = (26π/3) sec² (15°)
(dy/dt) = 29.2 ft/s