I thought I could make you day so here is your Anwser.The mass of a sample containing 4.00 mol of H2 is 8.08 g. The molar mass of hydrogen (H2) is 2.02 g/mol. In other words, there are 2.02 g in 1.00 mol of H2. The question is how many grams are in 4.00 mol of H2. Let's use proportion: 2.02 g : 1.00 mol = x : 4.00 mol. x = 2.02 g * 4.00 mol : 1.00 mol. x = 8.08 mol. Thus, there are 8.08 g of the sample of 4.00 mol of H2.
<h3><u>Answer;</u></h3>
0.002512 moles of H2O
<h3><u>Explanation</u>;</h3>
The reaction between acetic acid ( CH3COOH) and NaOH is given by the equation;
CH3COOH + NaOH ------> CH3COONa + H2O
Number of moles of CH3COOH = molarity × volume in litres
= 0.08 × 31.4/1000
= 2.512 × 10^-3
Similarly number of moles of NaOH = 1 × 24.3/1000
= 0.0243
From the reaction the mole ratio of CH3COOH : NaOH
Therefore; 0.0243 moles of NaOH will react with 0.0243 moles of CH3COOH but no.of moles of CH3COOH given in the question are 0.002512 moles, which is less than what is required.
Thus; CH3COOH is the limiting reagent and amount of products produced will depend on amount of CH3COOH only.
Since; 1 mole of CH3COOH gives 1 mole of water.
Then; 0.002512 moles of CH3COOH will give 0.002512 moles of H2O
The resistance of the appliance is 64.1 Ω.
<u>Explanation:</u>
As per the Ohm's law, which states that the electric current is in direct proportion to the voltage and is in inverse proportion to the resistance. It is given by the expression as,
V = IR
Where V is the voltage (V) = 150.0 V
I is the current (amps) = 2.34 amps
R is the resistance (ohm) or Ω = ?
Now we have to rearrange the equation to get the resistance as,

Now we have to plug in the values as,

= 64.1 Ω
So the resistance of the appliance is 64.1 Ω.