Answer:
<em>For both cases the answer is C</em>
Explanation:
We can see that the orbitals are not filled in the order of increasing energy and the Pauli exclusion principle is violated because it does not follow the correct order of the electron configuration; In the first exercise after the 2s2 orbital, the 2p2 orbital follows.
For the second exercise, you must start in order with level 1 and correctly filling each of the sublevels corresponding to each level until reaching level 7 and thus completing the desired number of electrons.
Answer:
Molarity is halved when the volume of solvent is doubled.
Explanation:
Using the dilution equation (volume 1)(molarity 1)=(volume 2)(molarity 2), we can demonstrate the effects of doubling volume.
Suppose the starting volume is 1 L and the starting molarity is 1 M, and doubling the volume would make the final volume 2 L.
Plugging these numbers into the equation, we can figure out the final molarity.
(1 L)(1 M)=(2 L)(X M)
X M= (1 L x 1 M)/(2 L)
X M= 1/2 M
This shows that the molarity is halved when the volume of solvent is doubled.
Answer: 51.9961 g/mol, don't know if it helps :)
Explanation:
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The mass of solid lead would displace exactly 234.6 liters of water should be <span>2,674,440</span>
Explanation:
This is correct!
Ions that exist in both the reactant and product side of the equation are referred to as spectator ions. Overall, they do not partake in the reaction. If they are present on both sides of the equation, you can cancel them out.
An example is;
Na+(aq) + Cl−(aq) + Ag+(aq) + NO3−(aq) → Na+(aq) + NO3−(aq) + AgCl(s)
The ions; Na+, NO3−(aq) would be cancelled out to give;
Cl−(aq) + Ag+(aq) → AgCl(s)