Be-beryllium have 2 electrons and it is in the 2 nd period
Answer:
Explanation:
Catalyst is I2 . Because I2 is reacted with starting material in step 1 and generated in second step
Rate limiting step is step 1. Because in rate equation CH3CHO and I2 is mentioned. Hence the overall rate of reaction is depending CH3CHO and I2. Rate limiting step is step 1
Answer:
17. D. Chemical change
18. C. Cell wall
19. D. To transfer matter and energy within and between organisms.
20. A. Transporting materials
21. C. Carbon dioxide
22. A. Cellular respiration
23. C. Produce food and give off oxygen
Explanation:
I have been able to supply the correct answers. The cell wall functions as a structure that provides structural support and protection to the cell. It is tough, flexible and at times rigid. In a chemical change, new materials with new properties are manufactured. So, the process of photosynthesis is a chemical change.
The endoplasmic reticulum actually transports material. It transports materials like protein and lipids made within the cell and sends it to where they are needed.
Carbon dioxide is the the gas that animals give off and plants use it during photosynthesis. Cellular respiration involves the activities that result to the breaking down of food in order to release energy.
Answer:
we know that gas molecules move fast by hitting the container and they never meet,so if we have one single gas molecule then it will move slower . This is because it is alone in an empty container so until it hits the container to change it's movements it will make the process slower.
Read the explanation below to have a better idea based on the kinetic molecular theory.
Explanation:
Hello in this question we have a container and in it is a single gas molecule. So there is our gas molecule and in fact right there that violates the kinetic molecular theory. Because the kinetic molecular theory thinks of these particles as being dimension less points. Because there is so much space between particles. The particles themselves have such an insignificant volume as they can be thought of as dimension lys points. Okay. But anyway this particle is in rapid motion and this motion is essentially random. So it's moving and it will eventually hit the wall of its container. It's moving rapidly so it's going to hit it pretty quickly and when it hits the wall of that container Yeah, it is going to bounce off when it does that. It's a totally elastic collision. So that means there will be no energy transfer, no energy loss, no energy gained. It will just serve to change the direction of the particle. So when it hits the wall it's going to bounce back off the wall and continue in a straight line until it hits another wall and then it will bounce off that wall and it will continue moving in this motion in this motion its speed is related to the amount of energy it has and therefore its temperature. So if we add heat, it will move faster. If we remove heat or cool it down, it will move slower. So when we remove heat, it will move slower. The kinetic molecular theory says it will be constantly moving As long as it is above absolute zero. It's only at absolute zero or 0 Kelvin, where would stop moving. Okay, so all these things describe its motion. It's in rapid random motion in a straight line until it hits the wall of its container. Then it will rebound without a transfer of any energy. It will be totally elastic collision. If we were to heat it up, it would move faster. If we were to cool it down, it would move more slowly, we would have to cool it all the way down to absolute zero before it would stop moving. Right, so all of these things describe its motion. In terms of that kinetic molecular theory,