Answer:
The distance of m2 from the ceiling is L1 +L2 + m1g/k1 + m2g/k1 + m2g/k2.
See attachment below for full solution
Explanation:
This is so because the the attached mass m1 on the spring causes the first spring to stretch by a distance of m1g/k1 (hookes law). This plus the equilibrium lengtb of the spring gives the position of the mass m1 from the ceiling. The second mass mass m2 causes both springs 1 and 2 to stretch by an amout proportional to its weight just like above. The respective stretchings are m2g/k1 for spring 1 and m2g/k2 for spring 2. These plus the position of m1 and the equilibrium length of spring 2 L2 gives the distance of L2 from the ceiling.
I think it’s output because output work is work done by a machine
Answer:
Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. Although a vector has magnitude and direction, it does not have position.
Explanation:
The only thing I found in my notes for this question was this although it isn't in your choices, I just hope this helps you and hope you get it right!
Here are the planets listed in order of their distance from the Sun: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. An easy mnemonic for remembering the order is “My Very Educated Mother Just Served Us Noodles
Hope this helps.
Answer:
103063860 Pa
Explanation:
= Density of seawater = 1030 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
h = Depth at which pressure is being measured = 10.2 km
The gauge pressure is given by

Therefore, the gauge pressure at a depth of 10.2 km is 103063860 Pa