Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
Answer:
answer in expl.
Explanation:
example of false solution.- Earth is not square
true eg. - we live in earth
Carbon has 4 valence electrons so to gain a noble gas electron configuration, which has 8 valence electrons and is the most electrically stable, carbon needs 4 more electrons.
Answer:
8.33mol/L
Explanation:
First, let us calculate the molar mass of of formaldehyde (CH2O). This is illustrated below:
Molar Mass of CH2O = 12 + (2x1) + 16 = 12 + 2 + 16 = 30g/mol
Mass of CH2O from the question = 0.25g
Number of mole CH2O =?
Number of mole = Mass /Molar Mass
Number of mole of CH2O = 0.25/30 = 8.33x10^-3mole
Now we can calculate the molarity of formaldehyde (CH2O) as follow:
Number of mole of CH2O = 8.33x10^-3mole
Volume = 1mL
Converting 1mL to L, we have:
1000mL = 1L
Therefore 1mL = 1/1000 = 1x10^-3L
Molarity =?
Molarity = mole /Volume
Molarity = 8.33x10^-3mole/1x10^-3L
Molarity = 8.33mol/L
Therefore, the molarity of formaldehyde (CH2O) is 8.33mol/L
Answer:
17.1195 grams of nitric acid are produced.
Explanation:

Moles of nitrogen dioxide :

According to reaction 3 moles of nitrogen dioxides gives 2 moles of nitric acid.
Then 0.5434 moles of nitrogen dioxides will give:
of nitric acid.
Mass of 0.3623 moles of nitric acid :

Theoretical yield = 22.8260 g
Experimental yield = ?


Experimental yield of nitric acid = 17.1195 g