The molarity of the acid sample H₂SO₄ is 0.052M .
<h3>What is Molarity ?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution.
Molarity is defined as the moles of a solute per liters of a solution.
Molarity is also known as the molar concentration of a solution
Now to determine the molarity of the acid sample
V( H₂SO₄) = 24.0 mL in liters = 24.0 / 1000 = 0.024 L
M(H₂SO₄) = ?
V(NaOH) = 20.0 mL = 20.0 / 1000 = 0.02 L
M(NaOH) = 0.125 M
Number of moles NaOH :
n = M x V
n = 0.125 x 0.02
n = 0.0025 moles of NaOH
H₂SO₄(aq) + 2 NaOH(aq) = Na₂SO₄(aq) + 2 H₂O(l)
1 mole H₂SO₄ ---------- 2 mole NaOH
? mole H₂SO₄ ---------- 0.0025 moles NaOH
moles = 0.0025 * 1 / 2
= 0.00125 moles of H₂SO₄
M(H₂SO₄) = n / V
M = 0.00125 / 0.024
= 0.052 M
Therefore the molarity of the acid sample H₂SO₄ is 0.052M .
To know more about molarity
brainly.com/question/12127540
#SPJ4
Answer:
164
1st step we will write desperate molar mass of each element
I believe the answer is
At the moment it is the best way of explaining our scientific knowledge.
Answer:
By increasing the pressure, the molar concentration of N2O4 will increase
Explanation:
We have the equation 2NO2 ⇔ N2O4
This equation is reversible and exotherm. By <u>decreasing the temperature</u>, the reaction will produce more energy, so the reaction will move to the right. But a lower temperature also lowers the rate of the process, so, the temperature is set at a compromise value that allows N2O4 to be made at a reasonable rate with an equilibrium concentration that is not too unfavorable
So <u>increasing the temperature</u> will shift the equilibrium to the left. The equilibrium shifts in the direction that consumes energy.
If we d<u>ecrease the concentration of NO2</u>, the equilibrium will shift to the left, resulting in forming more reactants.
To increase the molar concentration of the product N2O4, we have to <u>increase the pressure</u> of the system.
NO2 takes up more space than N2O4, so increasing the pressure would allow the reactant to collide more form more product.
By increasing the pressure, the molar concentration of N2O4 will increase