The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa
Answer: 1 mole ➡️ 6.022×10²³ atoms of si.
X mole ➡️ 2.8×10²⁴ atoms of si.
X = 2.8×10×10²³/6.022×10²³
= 28/6.022
= 4.65 moles.
Explanation:
Answer:
The sediments accumulating on and around mid-ocean ridges are mostly formed from the calcareous and siliceous tests of pelagic organisms. This research is concerned with understanding how the rate of sediment supply varies from place to place due to varied productivity of pelagic organisms, how the sediments accumulate on the complex topography of a mid-ocean ridge, and with using the sediments to study mid-ocean ridge processes such as faulting and volcanism.
Sediment transport and accumulation
When pelagic materials reach the seafloor, they are redistributed by bottom currents and by sedimentary flows. This work studied the form of the accumulation using sediment profiler records collected with a Deep Tow system from the Scripps Institution of Oceanography deployed over the Mid-Atlantic Ridge in the early 1970s. The records showed that both sets of transport processes are important. The shapes of deposits were studied to see to what extent they conform to the diffusion transport model - many deposits have parabolic surfaces, which are the steady state forms expected from the diffusion transport model under boundary conditions of constant input or output flux to basins.
The metalloids are Boron, Silicon, Geranium, etc and are found to the right of the metals and the left of the nonmetals. Since that is not an option, the best choice would be: The metalloids are located below nonmetals and above metals within a group.