Answer:
The conservation of energy should be used to answer this question.
a)
At the position where the spring is unstretched, the elastic potential energy of the spring is zero.

since
and
is equal to zero.

The roots of this quadratic equation can be solved by using discriminant.


We should use the positive root, so
x = 0.292 m.
b)
We should use energy conservation between the point where the spring is momentarily at rest, and the point where the spring is unstretched.

since the kinetic energy at point 2 and the potential energy at point 3 is equal to zero.

Explanation:
In questions with springs, the important thing is to figure out the points where kinetic or potential energy terms would be zero. When the spring is unstretched, the elastic potential energy is zero. And when the spring is at rest, naturally the kinetic energy is equal to zero.
In part b) the cookie slides back to its original position, so the distance traveled, x, is equal to the distance in part a). The frictional force is constant in the system, so it is quite simple to solve part b) after solving part a).
Answer:
Explanation:
V = 100sin(ωt) + 150cos(ωt)
let x = ωt
V = 100sin(x) + 150cos(x)
a maximum or minimum will occur when the derivative is zero
V' = 100cos(x) - 150sin(x)
0 = 100cos(x) - 150sin(x)
100cos(x) = 150sin(x)
100/150 = sin(x)/cos(x)
0.6667 = tan(x)
x = 0.588 rad
V = 100sin(0.588) + 150cos(0.588)
V = 180.27756
as the maximum will not occur until ωt = 0.588 radians, for a cosine function we subtract that amount as a phase angle φ
V = 180.3 cos(ωt - 0.588)
or as a sine function, the phase angle lags the cosine by a difference of π/2
V = 180.3sin(ωt - (0.588 - π/2)
V = 180.3sin(ωt + 0.983)
100/1=x/0.985, 98.5=x. So the distance from Orlando is 220-98.5=121.5miif he adjusts, he has 98.5 miles more to do, plus 121.5 miles he already did, the flight is 1.25 mi farther