Answer:
2,2,3,3-tetrapropyloxirane
Explanation:
In this case, we have to know first the alkene that will react with the peroxyacid. So:
<u>What do we know about the unknown alkene? </u>
We know the product of the ozonolysis reaction (see figure 1). This reaction is an <u>oxidative rupture reaction</u>. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If
is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.
<u>What is the product with the peroxyacid?</u>
This compound in the presence of alkenes will produce <u>peroxides.</u> Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product <u>2,2,3,3-tetrapropyloxirane.</u> (see figure 2)
First calculate the electric charge used to deposit 1.0 g Pt
C = (1.0 g Pt) (1 mol Pt / 195.1 g Pt) ( 2 mol e / 1 mol Pt)
( 96485 C / 1 mol e)
C = 989.08 C
C = It
Where I is the current
T is the time
T = C / i
T = 989.08 C / 0.15 A
T = 6593.88 s
T = 1.83 hrs