The pressure difference across the sensor housing will be "95 kPa".
According to the question, the values are:
Altitude,
Speed,
Pressure,
The temperature will be:
→ ![T = 15.04-[0.00649(9874)]](https://tex.z-dn.net/?f=T%20%3D%2015.04-%5B0.00649%289874%29%5D)
→ 
→ 
now,
→ ![P_o = 101.29[\frac{(-49.042+273.1)}{288.08} ]^{(5.256)}](https://tex.z-dn.net/?f=P_o%20%3D%20101.29%5B%5Cfrac%7B%28-49.042%2B273.1%29%7D%7B288.08%7D%20%5D%5E%7B%285.256%29%7D)
→
hence,
→ The pressure differential will be:
= 
= 
Thus the above solution is correct.
Learn more about pressure difference here:
brainly.com/question/15732832
Since the armature is wave wound, the magnetic flux per pole is 0.0274 Weber.
<u>Given the following data:</u>
- Number of armature conductors = 144 slots
- Number of poles = 4 poles
- Number of parallel paths = 2
To find the magnetic flux per pole:
Mathematically, the emf generated by a DC generator is given by the formula;
× 
<u>Where:</u>
- E is the electromotive force in the DC generator.
- Z is the total number of armature conductors.
- N is the speed or armature rotation in r.p.m.
- P is the number of poles.
- A is the number of parallel paths in armature.
First of all, we would determine the total number of armature conductors:
×
× 
Z = 864
Substituting the given parameters into the formula, we have;
× 
× 
<em>Magnetic flux </em><em>=</em><em> 0.0274 Weber.</em>
Therefore, the magnetic flux per pole is 0.0274 Weber.
Read more: brainly.com/question/15449812?referrer=searchResults
Answer:
The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.
Explanation:
160 - 120 = 40
120 = 100
40 = X
40 x 100 / 120 = X
4000 / 120 = X
33.333 = X
120 = 100
160 = X
160 x 100 /120 = X
16000 / 120 = X
133.333 = X
Answer:
uehgeg7djw7heidiisosowiuisiejei2k
Hello there,
In the problems given in the question, the driver's license is confiscated and suspended.
So our answer is: A)
Achievements.