Answer:
![\left[\begin{array}{ccc}10&0&0\\14&25&0\\57&18&39\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%260%260%5C%5C14%2625%260%5C%5C57%2618%2639%5Cend%7Barray%7D%5Cright%5D)
Explanation:
A lower triangular matrix is one whose elements above the main diagonal are zero meanwhile all the main diagonals elements and below are nonzero elements. This is one of the two existing types of triangular matrixes. Attached you will find a image referring more about triangular matrixes.
If there is any question, just let me know.
Answer:
The architectural pattern i will use for the school management is the client-server pattern.
This pattern would consist of a server and many clients. wherein the server component would provide services to that of the clients and its components as specified and also there would be a client request service from that of the server.
Explanation:
Solution
A school management system would always involve the client server pattern as this pattern would have a server and many clients wherein the server component would give services to that of the clients and its components as specified and also there would be a client request service from that of the server. This server would share the appropriate services to such clients and also listen to the client's requests.
Such kind of pattern would mostly be used for for the online platforms or application like that of document.
3-SAT ≤p TSP
If P ¹ NP, then no NP-complete problem can be solved in polynomial time.
both the statements are true.
<u>Explanation:</u>
- 3-SAT ≤p TSP due to any complete problem of NP to other problem by exits of reductions.
- If P ¹ NP, then 3-SAT ≤p 2-SAT are the polynomial time algorithm are not for 3-SAT. In P, 2-SAT is found, 3- SAT polynomial time algorithm implies the exit of reductions. 3 SAT does not have polynomial time algorithm when P≠NP.
- If P ¹ NP, then no NP-complete problem can be solved in polynomial time. because for the NP complete problem individually gets the polynomial time algorithm for the others. It may be in P for all the problems, the implication of latter is P≠NP.
Answer:
Pressure = 115.6 psia
Explanation:
Given:
v=800ft/s
Air temperature = 10 psia
Air pressure = 20F
Compression pressure ratio = 8
temperature at turbine inlet = 2200F
Conversion:
1 Btu =775.5 ft lbf,
= 32.2 lbm.ft/lbf.s², 1Btu/lbm=25037ft²/s²
Air standard assumptions:
= 0.0240Btu/lbm.°R, R = 53.34ft.lbf/lbm.°R = 1717.5ft²/s².°R 0.0686Btu/lbm.°R
k= 1.4
Energy balance:
As enthalpy exerts more influence than the kinetic energy inside the engine, kinetic energy of the fluid inside the engine is negligible
hence 

= 20+460 = 480°R
= 533.25°R
Pressure at the inlet of compressor at isentropic condition

=
= 14.45 psia
Answer:
See explanation
Explanation:
The magnetic force is
F = qvB sin θ
We see that sin θ = 1, since the angle between the velocity and the direction of the field is 90º. Entering the other given quantities yields
F
=
(
20
×
10
−
9
C
)
(
10
m/s
)
(
5
×
10
−
5
T
)
=
1
×
10
−
11
(
C
⋅
m/s
)
(
N
C
⋅
m/s
)
=
1
×
10
−
11
N