1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
6

Gina is driving her car to work, but she’s stopped at a red light. When the light turns green, she presses the gas pedal and acc

elerates (speeds up) to move the car. Which of these statements is true the moment Gina presses the gas pedal? Assume the road is flat and level.
-The net force on the car is zero in the horizontal direction.
-The net force on the car is zero in the horizontal and the vertical directions.
-The net force on the car is greater than zero in the horizontal direction.
-The net force on the car is greater than zero in the vertical direction.
-The net force on the car is less than zero in the vertical direction.
Physics
2 answers:
rusak2 [61]3 years ago
8 0
The net force of the car is greater than zero in the horizontal direction. If it were not greater thn zero, then the vehicle would remain stationary.
BaLLatris [955]3 years ago
7 0

Answer:

The net force on the car is greater than zero in the horizontal direction.

You might be interested in
Which of the following electromagnetic waves has the shortest wavelength?
nignag [31]
Of the list, Ultraviolet waves have the shortest wavelength
7 0
3 years ago
Read 2 more answers
Blocks A and B of unknown masses m1 and m2, respectively, are set up on an inclined plane as shown. Block A is attached to block
Korvikt [17]

Newton's second law we can find that the correct answer is:  

 E)  It cannot be determiner whick block has more masses from the information provided

Newton's second law establishes the relationship between force, mass, and acceleration of a body. Since force and acceleration are vector quantities, their components must be added on each axis

For this problem we have two bodies, let's write Newton's second law for the body B, we assume that the body B descends

            W_b - T = m_b a

            W_b  = m_b g

            m_b - T = m_b a

Where W_b is the weight of block B, T the tension of the string, mb the mass of block b and the acceleration

Now let's find the relation for block A

let's set a datum with the x axis parallel to the ramp

           T - Wₓ = mₐ a

           sin θ = Wₓ / W

            Wₓ = Wₐ sin θ

             Wₐ = mₐ g

Where Wₓ is the component of the weight, Wₐ the weight of the body A and θ the angle of the plane

Let's write our system of equations

           m_b g - T = m_b a

           T - mₐ g sin θ = mₐ a

let's add the equations

            g (m_b - mₐ sin θ) = (m_b + mₐ) a

            a =   \frac{m_b - m_a \ sin  \ \theta}{m_b+m_a} \ g

Let's analyze this expression

  • The numerator is positive the body B descends, this occurs when

          m_b - mₐ sin θ > 0

           

  • The numerator is negative, body B rises

           m_b - mₐ  sin θ <0

We can observe that the acceleration is positive or negative depending on the relation of the masses and the angle of the plane.

In conclusion using Newton's second law we find that the correct answer is  

 E )   It cannot be determiner whick block has more masses from the information provided

learn more about Newton's second law here:

brainly.com/question/9099891

8 0
3 years ago
You have probably noticed that carrying a person in a pool of water is much easier than carrying a person through air. To unders
Kruka [31]

Answer:

The answer is "0.91238 and 744.8"

Explanation:

In this scenario it is easier to take a person to the water-pool than to transport the people in the air, as the person's strength is increased by water upwards:

f_b \to m \to mg =person \\\\F_B \ in\  air = v\ & air\  g \\\\

               =0.076 \times 1.225 \times 9.8 \\\\ =0.91238 \ N\\\\

F_B \ in \ water = v  \& water \ g \\\\

                    =0.076 \times 1000 \times 9.8\\\\= 744.8 \ N\\

6 0
3 years ago
A prismatic bar AB of length L and solid circular cross section (diameter d) is loaded by a distributed torque of constant inten
Lyrx [107]

Answer:

a) the maximum shear stress τ_{max} the bar is 16T_{max} /πd³

b) the angle of twist between the ends of the bar is 16tL² / πGd⁴  

Explanation:

Given the data in the question, as illustrated in the image below;

d is the diameter of the prismatic bar of length AB

t is the intensity of distributed torque

(a) Determine the maximum shear stress tmax in the bar

Maximum Applied torque  T_max = tL

we know that;

shear stress τ = 16T/πd³

where d is the diameter

so

τ_{max} = 16T_{max} /πd³

Therefore, the maximum shear stress τ_{max} the bar is 16T_{max} /πd³

(b) Determine the angle of twist between the ends of the bar.

let theta (\theta) be the angle of twist

polar moment of inertia I_p} = πd⁴/32

now from the second image;

lets length dx which is at distance of "x" from "B"

Torque distance x

T(x) = tx

Elemental angle twist = d\theta = T(x)dx / GI_{p}

so

d\theta = tx.dx / G(πd⁴/32)

d\theta = 32tx.dx / πGd⁴

so total angle of twist \theta will be;

\theta =  \int\limits^L_0  \, d\theta

\theta =  \int\limits^L_0  \, 32tx.dx / πGd⁴

\theta = 32t / πGd⁴  \int\limits^L_0  \, xdx

\theta = 32t / πGd⁴ [ L²/2]

\theta = 16tL² / πGd⁴  

Therefore,  the angle of twist between the ends of the bar is 16tL² / πGd⁴  

7 0
3 years ago
A 10 cm diameter pulley is used to lift a bucket of cement weighing 400 N. How much force must be applied to the rope to lift th
Alina [70]

hi brainly user! ૮₍ ˃ ⤙ ˂ ₎ა

⊱┈────────────────────────┈⊰

\large \bold {ANSWER}

Considering that the pulley is fixed, the force applied should be equal to the weight of the object - of 400N.

\large \bold {EXPLANATION}

Pulleys or pulleys are mechanical tools used to assist in the movement of objects and bodies. There are two types of pulleys: fixed and movable. While the fixed pulley changes the direction of force, the moving pulley helps to decrease the force needed to move the object or body in question.

As the statement only tells us a pulley, we must consider that it is fixed, <u>because generally when it is mobile, this information is highlighted in the question</u>.

In this way, a fixed pulley only changes the direction of the applied force. Thus, the force must have the same magnitude as the weight of the object to be moved. If the bucket weighs 400N, the force applied to the pulley must be 400N.

<u>Therefore, having a fixed pulley, the force applied must be equal to the weight of the object, and will be 400N.</u>

3 0
2 years ago
Other questions:
  • If a gasoline engine has an efficiency of 21 percent and losses 780 J to the cooling system and exhaust during each cycle, how m
    13·1 answer
  • Rank in order, from largest to smallest, the magnitudes of the electric field at the black dot. A. 2, 1, 3, 4 B. 1, 4, 2, 3 C. 3
    5·1 answer
  • If a net force of 25 N is exerted over a distance of 4 m to the right on a 2 kg mass initially at rest and moves it, what is the
    11·1 answer
  • What is the volume of water in 150ml of the 35% w/w of sucrose solution with a specific gravity of 1.115?
    15·1 answer
  • What would happen to the moon if the earth stopped exerting the force of gravity onto it?
    6·1 answer
  • In an equation f = l^2-d^2/4l the intercept is<br>​
    13·1 answer
  • A 150 kg bike takes a roundabout with a radius of 53.0 m. The roundabout it’s only ¾ of a circle. the time taken was 0.35 minute
    14·1 answer
  • 1. express the following in proper SI form using the appropriate prefixes. a. 52500000 m b. 1000 g c. 2435200000​
    15·1 answer
  • Draco pushes a 3.2kg box with 1.5N of force. What is the resultant acceleration?
    13·1 answer
  • A plane flying at a steady speed of 100 m/s accelerates to 150 m/s in 10 seconds. What is the plane’s acceleration?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!