Answer:
The mechanism of this reaction i shown on the second uploaded image
The final product of the reaction is shown on the third uploaded image
The hydroxide would be first mixed with the ketone group before the aldehyde is added
Explanation:
The compound given in the question is 2,2-dimethylpropanal (pivalaldehyde) the structural formula is shown on the first uploaded image
looking at the structurally formula we can see that the hydroxide promoted reaction of this compound would be between the ketone and aldehyde functional group present in this compound in the presence of a hydroxide
Now this process of the reaction is this
The
is first made to react with the ketone group
Then the aldehyde is added
What happens is that that the
would search for an acidic proton because it is a base and this acidic proton is present in ketone and absent in aldehyde group hence the reason for the first reaction with the ketone group before the aldehyde is added
Answer:
0.077M is the concentration of the hydroxyl ion
Explanation:
Dilution factor is the ratio between the aliquot that is taken of a solution and the total volume of the diluted solution.
For the problem, dilution factor is:
7.53cm³ / 147cm³ =<em> 0.05122</em>
To obtain molarity of a diluted solution you must multiply dilution factor and initial molarity of the solution, thus:
1.5 M × 0.05122 = <em>0.077M is the concentration of the hydroxyl ion</em>
Answer:
1M
Explanation:
The molarity of a substance is defined as the number of moles of the substance divided by how many liters the solution is. NaOH has a molar mass of about 40 grams, meaning that 10 grams of it would be 0.25 moles. 0.25/0.25= a molarity of 1.
Hope this helps!