Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
Answer:
Calculating Atomic Mass
Change each percent abundance into decimal form by dividing by 100. Multiply this value by the atomic mass of that isotope. Add together for each isotope to get the average atomic mass.
Explanation:
have a nice day
<span>conductor because it conducts the electrons</span><span />
Answer:
2.8 L
Explanation:
From the question given above, the following data were obtained:
Number of mole (n) = 0.109 mole
Pressure (P) = 0.98 atm
Temperature (T) = 307 K
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
The volume of the helium gas can be obtained by using the ideal gas equation as follow:
PV = nRT
0.98 × V = 0.109 × 0.0821 × 307
0.98 × V = 2.7473123
Divide both side by 0.98
V = 2.7473123 / 0.98
V = 2.8 L
Thus, the volume of the helium gas is 2.8 L.