-- The wavelength and the amplitude were described in my answer to your previous question.
-- A "compression" is a place where the wave is <em>compressed</em>. It's the darker section of the wave in the picture, where the wavelength is temporarily shorter, so several waves are all bunched up (compressed) in a small time.
-- A "rarefaction" is exactly the opposite of a "compression". It's a place where the wave gets more "<em>rare</em>" ... the wavelength temporarily gets longer, so that several waves get stretched out, and there are fewer of them in some period of time. The arrow in the picture points to a rarefaction.
Answer:
Horse/Speed
55 mph
rounded to the tenth? either 60 or 50
but 350 would stay like that i believe!
Explanation:
Make a proportion
3 H2 - 2 NH3
19H2 - x
x = (19x2)/3= 12,666666
Given,
Current (I) = 0.50A
Voltage (V) = 120 volts
Resistance (R) =?
We know that:-
Voltage (V) = Current (I) x Resistance (R)
→Resistance (R) = Voltage (V) / Current (I)
= 120/0.50
= 24Ω
∴ Resistance (R) = 24Ω
The given question is incomplete. The complete question is as follows.
A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0.90 m/s each second. The push force has a horizontal component of 20 N and a vertical component of 25 N downward. Calculate the coefficient of kinetic friction between the box and the floor.
Explanation:
The given data is as follows.
= 20 N,
= 25 N, a = -0.9
W = 83 N
m = 
= 8.46
Now, we will balance the forces along the y-component as follows.
N = W +
= 83 + 25 = 108 N
Now, balancing the forces along the x component as follows.
= ma
= 7.614 N
Also, we know that relation between force and coefficient of friction is as follows.

= 
= 0.0705
Thus, we can conclude that the coefficient of kinetic friction between the box and the floor is 0.0705.