Pnet = Po + dgh
<span>Density of saltwater = 1030 kg/m^3. </span>
<span>Disregard the thickness. Assuming it's a circular window, then the area is pi(r^2). </span>
<span>d = 20 cm = 0.2 m </span>
<span>r = d/2 = 0.1 m </span>
<span>A = pi(r^2) </span>
<span>A = 3.14159265(.1^2) </span>
<span>A = 0.0314159265 m^2 </span>
<span>p = F/A </span>
<span>p = (1.1 x 10^6) / (0.0314159265) </span>
<span>p = 35,014,087.5 Pa </span>
<span>1 atm = 101,325 Pa </span>
<span>P = Po + dgh </span>
<span>h = (P - Po) / dg </span>
<span>h = (35,014,087.5 - 101,325) / (1030 x 9.81) </span>
<span>h = 3 455.23812 m </span>
<span>h = 3.5 km</span>
So, the force of gravity that the asteroid and the planet have on each other approximately 
<h3>Introduction</h3>
Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

With the following condition :
- F = gravitational force (N)
- G = gravity constant ≈
N.m²/kg²
= mass of the first object (kg)
= mass of the second object (kg)- r = distance between two objects (m)
<h3>Problem Solving</h3>
We know that :
- G = gravity constant ≈
N.m²/kg²
= mass of the planet X =
kg.
= mass of the planet Y =
kg.- r = distance between two objects =
m.
What was asked :
- F = gravitational force = ... N
Step by step :





<h3>Conclusion</h3>
So, the force of gravity that the asteroid and the planet have on each other approximately

<h3>See More</h3>
Answer:
0.02 s
Explanation:
Take the (+x) direction to be up.
The average velocity v during a time interval Δt is the displacement Δx divided by Δt.
v=Δx/Δt
=x_f-x_i/t_f-t_i (1)
We assume that your height is 1.6m
Solving [1]
Δt=Δx/v
= 0.02 s
Starter
Explanation:
Turn the ignition switch to start and release the key immediately or you could destroy the starter.
The car starter is used to cause ignition in the internal combustion engine in order to fire the piston and cause mechanical motion. The starter is used to start the cyclic process of the internal combustion engine.
- Once the engine starts by igniting the starter, it is best to release it.
- The starter ensures that the spark plug is engaged and the motor is brought into work.
- If the ignition is still engaged, the process continues repeatedly and it can damage the starter of the car.
learn more:
Automobile brainly.com/question/2599962
#learnwithBrainly