Answer:
potential energy
kinetic energy
thermal energy
Explanation:
The book's potential energy can be released by knocking it off the table. As the book falls, its potential energy is converted to kinetic energy. When the book hits the floor this kinetic energy is converted into heat and sound by the impact.
The gravitational potential energy referred to the ground level is given by

where m is the mass of the object,

is the gravitational acceleration and h is the height of the object with respect to the ground.
Therefore in our problem the potential energy is
Frequency is measured in units of reciprocal time.
Period is measured in units of time.
Phase is a number without units that represents a fraction of a wave.
None of these is measured in meters, so none of them can be the answer.
It must be either amplitude or wavelength.
Amplitude is a quantity that's measured at one or two points in the same wave.
The question is talking about points on consecutive waves.
<em>Wavelength is</em> the only choice left. That must be it.
Answer:
Explanation:
For this problem, we just need to remember conservation of momentum, as there are no external forces in the horizontal direction:

where the suffix i means initial, and the suffix f means final.
The initial momentum will be:

as the second puck is initially at rest:

Using the unit vector
pointing in the original line of motion:



So:


Knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula

So, our velocity vectors will be:


We got


So, we got the equations:

and
.
From the last one, we get:




and, for the first one:






so:

and


Answer: Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
Explanation: Impulse is defined as the force acting on an object for a short period or interval of time.
Mathematically it is given by the relation:
Impulse = Force
Time
According to the numerical values given in the question, I = 202 Ns and T = 0.244 s
So, Force F =
=
= 827.86 N
Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).