1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
6

Which of the following does not have a global cycle?

Physics
2 answers:
Darya [45]3 years ago
8 0
The answer is c hope it helps
Musya8 [376]3 years ago
3 0

It's Iron, I believe.

You might be interested in
Explain the energy transfer if a book on the edge of a table, falls to the floor. There should be 3 types of energy transfers.
gavmur [86]

Answer:

potential energy

kinetic energy

thermal energy

Explanation:

The book's potential energy can be released by knocking it off the table. As the book falls, its potential energy is converted to kinetic energy. When the book hits the floor this kinetic energy is converted into heat and sound by the impact.

6 0
3 years ago
Read 2 more answers
What is the gravitational potential energy of a 150 kg object suspended 5m above the Earth's surface
ella [17]
The gravitational potential energy referred to the ground level is given by
U=mgh
where m is the mass of the object, g=9.81 m/s^2 is the gravitational acceleration and h is the height of the object with respect to the ground.

Therefore in our problem the potential energy is
U=(150 kg)(9.81 m/s^2)(5 m)=7357.5 J
6 0
3 years ago
He distance between two consecutive crests is 2.5 meters. Which characteristic of the wave does this distance represent? amplitu
kupik [55]

Frequency is measured in units of reciprocal time.
Period is measured in units of time.
Phase is a number without units that represents a fraction of a wave.

None of these is measured in meters, so none of them can be the answer.
It must be either amplitude or wavelength.

Amplitude is a quantity that's measured at one or two points in the same wave.
The question is talking about points on consecutive waves.

<em>Wavelength is</em> the only choice left.  That must be it.

3 0
3 years ago
Read 2 more answers
A puck of mass 0.70 kg approaches a second, identical puck that is stationary on frictionless ice. The initial speed of the movi
natali 33 [55]

Answer:

  • v_1  =  \ 5.196 \frac{m}{s}
  • v_2 =  3 \frac{m}{s}

Explanation:

For this problem, we just need to remember conservation of momentum, as there are no external forces in the horizontal direction:

\vec{p}_i = \vec{p}_f

where the suffix i  means initial, and the suffix f means final.

The initial momentum will be:

\vec{p}_i = m_1 \ \vec{v}_{1_i} + m_2 \ \vec{v}_{2_i}

as the second puck is initially at rest:

\vec{v}_{2_i} = 0

Using the unit vector \vec{i} pointing in the original line of motion:

\vec{v}_{1_i} = 6.0 \frac{m}{s} \hat{i}

\vec{p}_i = 0.70 \ kg  \ 6.0 \frac{m}{s} \ \hat{i} + 0.70 \ kg \ 0

\vec{p}_i = 4.2 \ \frac{kg \ m}{s} \ \hat{i}

So:

\vec{p}_i =  4.2 \ \frac{kg \ m}{s} \ \hat{i} = \vec{p}_f

\vec{p}_f =  4.2 \ \frac{kg \ m}{s} \ \hat{i}

Knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula

\ \vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )

So, our velocity vectors will be:

\vec{v}_{1_f} = v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ )

\vec{v}_{2_f} = v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )

We got

\vec{p}_f = 0.7 \ kg \ \vec{v}_{1_f} + 0.7 \ kg \ \vec{v}_{2_f}

4.2 \ \frac{kg \ m}{s} \ \hat{i} = 0.7 \ kg \   v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ )  + 0.7 \ kg \ v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )

So, we got the equations:

4.2 \ \frac{kg \ m}{s}  = 0.7 \ kg \   v_1 \  cos(30 \°) + 0.7 \ kg \ v_2 \  cos(-60 \°)

and

0  = 0.7 \ kg \   v_1 \  sin(30 \°) + 0.7 \ kg \ v_2 \  sin(-60 \°).

From the last one, we get:

0  = 0.7 \ kg \  ( v_1 \  sin(30 \°) +  \ v_2 \  sin(-60 \°) )

0  =  v_1 \  sin(30 \°) +  \ v_2 \  sin(-60 \°)

v_1 \  sin(30 \°) = -  \ v_2 \  sin(-60 \°)

v_1  =  \ v_2 \  \frac{sin(60 \°)}{ sin(30 \°) }

and, for the first one:

4.2 \ \frac{kg \ m}{s}  = 0.7 \ kg  \ (  v_1 \  cos(30 \°) + v_2 \  cos(60 \°) )

\frac{4.2 \ \frac{kg \ m}{s}}{ 0.7 \ kg} =    v_1 \  cos(30 \°) + v_2 \  cos(60 \°)

\frac{4.2 \ \frac{kg \ m}{s}}{ 0.7 \ kg} =    v_1 \  cos(30 \°) + v_2 \  cos(60 \°)

6 \ \frac{m}{s} =    (\ v_2 \  \frac{sin(60 \°)}{ sin(30 \°) } ) \  cos(30 \°) + v_2 \  cos(60 \°)

6 \ \frac{m}{s} = v_2     (\   \frac{sin(60 \°)}{ sin(30 \°) } ) \  cos(30 \°) +   cos(60 \°)

6 \ \frac{m}{s} = v_2  * 2

so:

v_2 = 6 \ \frac{m}{s} / 2 = 3 \frac{m}{s}

and

v_1  =  \ 3 \frac{m}{s}  \  \frac{sin(60 \°)}{ sin(30 \°) }

v_1  =  \ 5.196 \frac{m}{s}

3 0
3 years ago
The linear impulse delivered by the hit of a boxer is 202 N · s during the 0.244 s of contact. What is the magnitude of the aver
zlopas [31]

Answer: Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).

Explanation: Impulse is defined as the force acting on an object for a short period or interval of time.

Mathematically it is given by the relation:

Impulse = Force \times Time

According to the numerical values given in the question, I = 202 Ns and T = 0.244 s

So, Force F = \frac{Impulse}{Time} = \frac{202}{0.244} = 827.86 N

Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).

7 0
3 years ago
Other questions:
  • Which of the following substances are NOT formed by chemical bonds?
    14·2 answers
  • What is the inverse tangent of 0.9?
    8·2 answers
  • Which one of the following statements about proprioceptive neuromuscular facilitation (PNF) is most accurate?
    11·2 answers
  • A ballon is losing altitude at a constant rate of 25 kilometers per day. if a landing is defined as an impact with a velocity of
    10·1 answer
  • A ball having a mass of 0.20 kilograms is placed at a height of 3.25 meters. If it is dropped from this height, what will be the
    11·2 answers
  • An optimistic outlook is related to:
    5·2 answers
  • sound waves generated in a classroom must _______ through an open doorway in order to propagate into the hallway. reflect refrac
    14·2 answers
  • What is the the outermon shell with elections!
    12·1 answer
  • Which of the following is an incorrect statement?
    13·1 answer
  • A.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!