Answer:
0.02 s
Explanation:
Take the (+x) direction to be up.
The average velocity v during a time interval Δt is the displacement Δx divided by Δt.
v=Δx/Δt
=x_f-x_i/t_f-t_i (1)
We assume that your height is 1.6m
Solving [1]
Δt=Δx/v
= 0.02 s
Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:
since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:
And the raising speed <em>v </em>of the water is given by:
where <em>q</em> is the water flow (1 cubic foot per minute).
Answer:
1:knowledge of the structure of DNA
2:an understanding of hemoglobin
4:ground fault circuit interrupters
7:aerogel
Explanation:
Answer:
S = 122.5m
Explanation:
Given the following data;
Acceleration due to gravity = 9.8m/s²
Time, t = 5 seconds
Since it's a free fall, initial velocity, u = 0
To find the displacement, we would use the second equation of motion given by the formula;
Where;
- S represents the displacement or height measured in meters.
- u represents the initial velocity measured in meters per seconds.
- t represents the time measured in seconds.
- a represents acceleration measured in meters per seconds square.
Substituting into the equation, we have;
S = 122.5m.