I think the correct answer from the choices listed above is the second option. The relationship between the direction of energy and wave motion in a transverse wave would be the <span>energy direction is perpendicular to the motion of the wave. Hope this answers the question. Have a nice day.</span>
Explanation:
its hard to explain its very complex but its so they can function properly
Answer: electromagnetism.
Explanation:The use of coils of wires produces a relationship between electricity and magnetism that gives us another magetism called electromagnetism.
The object takes 0.5 seconds to complete one rotation, so its rotational speed is 1/0.5 rot/s = 2 rot/s.
Convert this to linear speed; for each rotation, the object travels a distance equal to the circumference of its path, or 2<em>π</em> (1.2 m) = 2.4<em>π</em> m ≈ 7.5 m, so that
2 rot/s = (2 rot/s) • (2.4<em>π</em> m/rot) = 4.8<em>π</em> m/s ≈ 15 m/s
thus giving it a centripetal acceleration of
<em>a</em> = (4.8<em>π</em> m/s)² / (1.2 m) ≈ 190 m/s².
Then the tension in the rope is
<em>T</em> = (50 kg) <em>a</em> ≈ 9500 N.
Following the initial 4.0 seconds of travel, the cart moved 32m.
<h3>What is an equation of motion?</h3>
Physicists use equations of motion to describe how a physical system behaves in terms of how its motion changes over time.
The behavior of a physical system is described by the equations of motion in more detail as a collection of mathematical functions expressed in terms of dynamic variables. These variables typically comprise time and spatial coordinates, but they could also have momentum components. The most flexible option is generalized coordinates, which can be any useful variable that is a component of the physical system. In classical mechanics, the functions are defined in a Euclidean space, while curved spaces are used in relativity instead. The equations are the answers to the differential equations describing the motion of the dynamics of the dynamics of a system are known. The amount of motion changes according to the strength of the force and does so in the direction of the force's applied straight line.
To know more about equations of motion, click here:
brainly.com/question/14355103
#SPJ4