Answer:
2.55 m
Explanation:
Elastic energy = gravitational energy
½ kx² = mgh
h = kx² / (2mg)
h = (200 N/m) (0.05 m)² / (2 × 0.010 kg × 9.8 m/s²)
h = 2.55 m
3 Newtons toward the right because Newton’s second law:
F = ma
15N - 12N = ma
3N = ma
(With the right being the positive direction and the left the negative direction)
Answer:
impulse acting on it
Explanation:
The impulse is defined as the product between the force applied to an object (F) and the time interval during which the force is applied (
):

We can prove that this is equal to the change in momentum of the object. In fact, change in momentum is given by:

where m is the mass and
is the change in velocity. Multiplying and dividing by
, we get

and since
is equal to the acceleration, a, we have

And since the product (ma) is equal to the force, we have

which corresponds to the impulse.
Hi there
The answer is pixel
Hope this helps