Answer:
C. 
Explanation:
0 charge → <em>Neutron</em>
1 charge → <em>Proton</em>
I am joyous to assist you anytime.
Answer:
yes
Explanation:
I think so because it not mention in the law
Running on sand requires 1.6 times more energy spent than running on hard surface, so the force applied by our foot on sand is less.
Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .
Answer:
820 nm
Explanation:
We are given that
Wavelength=



For first minimum therefore
m=0
We know that for destructive interference

Substitute the values



Hence, the distance between two slits that produces the first minimum=820 nm