Answer:
-8.4°C
Explanation:
From the principle of heat capacity.
The heat sustain by an object is given as;
H = m× c× (T2-T1)
Where H is heat transferred
m is mass of substance
T2-T1 is the temperature change from starting to final temperature T2.
c- is the specific heat capacity of ice .
Note : specific heat capacity is an intrinsic capacity of a substance which is the energy substained on a unit mass of a substance on a unit temperature change.
Hence ; 35= 1× c× ( T2-(-25))
35= c× ( T2+25)
35 =2.108×( T2+25)
( T2+25)= 35/2.108= 16.60°{ approximated to 2 decimal place}
T2= 16.60-25= -8.40°C
C, specific heat capacity of ice is =2.108 kJ/kgK{you can google that}
Answer:
(a) 
(b) 
(c)
(d)
Solution:
As per the question:
Refractive index of medium 1, 
Angle of refraction for medium 1, 
Angle of refraction for medium 2, 
Now,
(a) The expression for the refractive index of medium 2 is given by using Snell's law:

where
= Refractive Index of medium 2
Now,

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:


(c) To calculate the velocity of light in medium 1:
We know that:
Thus for medium 1
(d) To calculate the velocity of light in medium 2:
For medium 2:
A) 1.55
The speed of light in a medium is given by:

where
is the speed of light in a vacuum
n is the refractive index of the material
In this problem, the speed of light in quartz is

So we can re-arrange the previous formula to find n, the index of refraction of quartz:

B) 550.3 nm
The relationship between the wavelength of the light in air and in quartz is

where
is the wavelenght in quartz
is the wavelength in air
n is the refractive index
For the light in this problem, we have

Therefore, we can re-arrange the equation to find
, the wavelength in air:

Answer:
Specific gravity can be used to determine if an object will sink or float on water. ... If an object or liquid has a specific gravity greater than one, it will sink. If the specific gravity of an object or a liquid is less than one, it will float.
hope this helps, have a great day/night, and stay safe!