The answer is going be desert.
Answer:
10°C
Explanation:
To convert °F to °C, we use the formula:
°C = (°F - 32) * ( 5/9)
So, to convert 50°F to the equivalent in °C, we can proceed as follows:
°C = ( 50 - 32 ) * (5/9)
°C = ( 18 ) * (5/9), which is, approximately,
°C = 9.999999999... ≈ 10 (5/9 ≈0.555555...)
So, 50°F is equivalent to 10°C.
The force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is: B. a frictional force.
<h3>What is a force?</h3>
A force can be defined as a push or pull of an object or physical body, which typically results in a change of motion (acceleration), especially due to the interaction of the object with another.
<h3>The types of force.</h3>
In Science, there are different types of force and these include the following:
<h3>What is a
frictional force?</h3>
Friction force can be defined as a type of force that resists and slows the relative motion of two physical objects when there surfaces come in contact. This ultimately implies that, a frictional force prevents two surfaces from easily sliding over or slipping across one another.
In this context, we can infer and logically deduce that the force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is a frictional force.
Read more on frictional force here: brainly.com/question/25253774
#SPJ1
Complete Question:
Brandon pushes an object on a ramp as shown in the diagram.
While Brandon pushes the object and it remains in contact the ramp, which force has the greatest effect on causing it to slow?
A. the applied force
B. a frictional force
C. the force due to gravity
D. a force of air resistance
Answer:
A) M
Explanation:
The three blocks are set in series on a horizontal frictionless surface, whose mutual contact accelerates all system to the same value due to internal forces as response to external force exerted on the box of mass M (Newton's Third Law). Let be F the external force, and F' and F'' the internal forces between boxes of masses M and 2M, as well as between boxes of masses 2M and 3M. The equations of equilibrium of each box are described below:
Box with mass M

Box with mass 2M

Box with mass 3M

On the third equation, acceleration can be modelled in terms of F'':

An expression for F' can be deducted from the second equation by replacing F'' and clearing the respective variable.



Finally, F'' can be calculated in terms of the external force by replacing F' on the first equation:




Afterwards, F' as function of the external force can be obtained by direct substitution:

The net forces of each block are now calculated:
Box with mass M


Box with mass 2M


Box with mass 3M

As a conclusion, the box with mass M experiments the smallest net force acting on it, which corresponds with answer A.
The plants are the most efficient users because they use the most of it. After that about 90% of the energy gets used up whoever eats the next organism.