A) The answer is 11.53 m/s
The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi
Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²
Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h
So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² = 1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² = 1/2 vi² + a * h
We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m
1/2 vf² = 1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s
b) The answer is 6.78 m
The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE
Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²
Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h
KE = PE
1/2 m * v² = m * a * h
Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s²
h = ?
1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
Answer:
-.457 m/s^2
Explanation:
Actual weight = 60 .3 (9.81) = 591.54 N
Accel of lift changes this to 60.3 ( 9.81 - L) where L - accel of lift
60.3 ( 9.81 - L ) = 564
solve for L = .457 m/s^2 DOWNWARD
so L = - .457 m/s^2
As per energy conservation we know that
Energy enter into the bulb = Light energy + Thermal energy
so now we have
energy enter into the bulb = 100 J
Light energy = 5 J
now from above equation we have
Answer:
D). Uranus.
Explanation:
Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.
As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, <u>option D</u> is the correct answer.
Answer:
the work done by the lawnmower is 236.14 J.
Explanation:
Given;
power exerted by the lawnmower engine, P = 19 hp
time in which the power was exerted, t = 1 minute = 60 s.
1 hp = 745.7 watts
The work done by the lawnmower is calculated as follows;
Therefore, the work done by the lawnmower is 236.14 J.