Solution :
Given :
The number of blows is given as :
0 - 6 inch = 4 blows
6 - 12 inch = 6 blows
12 - 18 inch = 6 blows
The vertical effective stress 


Now,

corrected N - value of overburden
effective stress at level of test
0 - 6 inch, 
= 9.86
6 - 12 inch, 
= 14.8
12 - 18 inch, 
= 14.8

= 13.14
= 13
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Answer:


Explanation:
Considering the one dimensional and steady state:
From Heat Conduction equation considering the above assumption:
Eq (1)
Where:
k is thermal Conductivity
is uniform thermal generation


Putt in Eq (1):

Energy balance is given by:

Eq (2)

Putting x=L


From Eq (2)

Answer:
(d) 2 pF
Explanation: the charge on capacitor is given by the expression
Q=CV
where Q=charge
C=capacitance
V=voltage across the plate of the capacitor
here we have given Q=500 pF, V=250 volt
using this formula C=
=500×
×
=2×
=2 pF