To solve this problem we will use the Froude number that relates the Forces of Inertia with the Forces of Gravity. There will be jump in the downstream only if Froude Number (Fr) is greater than 1 at upstream. Our values are given as,

Then the velocity would be:

The number of Froude is given as,

Where,
V = Velocity
g = Gravity
D = Diameter
Replacing we have that

There will be no Jump, correct answer is B.
According to the question of the pulsating brake pedal, both A and B are correct.
What causes brake pulsation?
Brake pulsation is mainly caused by warped rotors/brake discs. Excessive hard braking or quick stops, which can significantly overheat the discs, are the primary causes of deformed rotors. When the discs overheat, the composition of the metal disc material changes, resulting in imperfections in the metal's surface. Hotspots are noticeable irregularities. They appear as discoloured areas of the disc material, which are often bluish or blackish in appearance. The brake pedal is the pedal which you press with your foot to slow or stop a vehicle. When the driver presses the brake pedal, the system automatically delivers the appropriate pressure required to prevent colliding with the vehicle in front.
To learn more about brake pulsation
brainly.com/question/28779956
#SPj4
Answer:
See below
Explanation:
<u>Check One-Sample T-Interval Conditions</u>
Random Sample? √
Sample Size ≥30? √
Independent? √
Population Standard Deviation Unknown? √
<u>One-Sample T-Interval Information</u>
- Formula -->

- Sample Mean -->

- Critical Value -->
(given
degrees of freedom at a 95% confidence level) - Sample Size -->

- Sample Standard Deviation -->

<u>Problem 1</u>
The critical t-value, as mentioned previously, would be
, making the 95% confidence interval equal to 
This interval suggests that we are 95% confident that the true mean levels of lead in soil are between 381.5819 and 398.9181 parts per million (ppm), which satisfies the EPA's regulated maximum of 400 ppm.