<span>To find the volume of the plate without accounting for the hole firstly
V = (15.0 cm)(12.5 cm)(0.250 cm) = 46.875 cm^3
and the volume of the hole is
(pi)(1.25 cm)^2(0.250 cm) = 1.2272 cm^3
we will subtract the volume of the hole from the rest 45.648 cm^3
the multiply this by the density of the alloy to find the mass
(8.80 g/cm^3)(45.648 cm^3) = 401.701 g.
0.044% of this is Si, so (0.00044)(401.701 g) = 0.17675 g is silicon.
by the number of atoms and using average atomic mass of silicon and Avogadro's number to find the number of silicon atoms:
(0.17675 g)(1 mol/28.0855 g)(6.022E23 atoms/1 mol) =3.794E21atoms of Si
3.10% of these are Si-30:(0.0310)(3.794E18 atoms)=1.176E20 atoms of Si-30 and with two significant figures, 1.2E20 atoms.
hope this helps
</span>
Because diffusion<span> is the process when molecules move to lower or higher concentration, so as the molecules move faster they are going to lower or high concentration faster.</span>
Answer:
Order of increasing strength of intermolecular attraction:
>
>
> Ar
Explanation:
can form hydrogen bond as H atom is attached with electronegative atom O.
Rest three,
,
, Ar are non-polar molecules.
In non-polar molecules, van der Waal's intermolecular forces of attractions exist. Hydrogen bonding is stronger intermolecular attraction then van der Waal's intermolecular forces of attraction, hence,
has strongest intermolecular attractions.
Ar will have least intermolecular attraction, as it behaves almost as ideal gas and there is no intermolecular attraction exist between molecules of ideal gases.
Molecular size and mass of
is high as compared to
.
van der Waals intermolecular forces of attraction increases with increase in size.
Therefore,
Order of increasing strength of intermolecular attraction will be:
>
>
> Ar
Answer:
Hypsochromic shift.
The second solvent is more polar.
Explanation:
Compound A + Solvent 1 = red
Compound A + Solvent 2 = orange
Since orange has a smaller wavelength than red, the electronic transition observed when the compound A is dissolved in solvent 2 has a higher energy.
A band transition to a lower wavelength and higher energy is called a hypsochromic shift.
The change in the color due to the solvent is called solvatochromism. Usually, when the hypsochromic shift is observed (negative solvatochromism) it means that the solvent is more polar.