1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliina [53]
3 years ago
14

What determines the speed of a wave? Four sentences.

Physics
1 answer:
Ann [662]3 years ago
5 0
The speed of waves are determined by the frequency of the push(wind). This really determines what the wave is being pushed by. If it were a Tsunami it would be by the frequency of the Tsunami if it were from the wind then the winds frequency would determine it's speed. Also the wavelength determines the speed because of the wight it has, but again something has to cause this wave to move.
You might be interested in
Determine whether or not each of the following statement is true. If a statement is true, prove it. If the statement is false, p
Studentka2010 [4]

Answer:

True

Explanation:

This is a representation of Gauss law.

Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.

8 0
3 years ago
What is E(r)E(r)E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the dist
andriy [413]

Answer:

E(r) = λ/2πrε0

Explanation:

If we consider an infinitely long line of charge with the charge per unit length being λ, we can take advantage of the cylindrical symmetry of this situation.

By symmetry, i mean that the electric fields all point radially away from the line of charge and thus there is no component parallel to the line of charge.

Niw, let's use a cylinder (with an arbitrary radius (r) and length (l)) centred on the line of charge as our Gaussian surface.

Doing that will mean that the electric field would be perpendicular to the curved surface of the cylinder. Therefore, the angle between the electric field and area vector is equal to zero and cos θ = cos 0 = 1

Now, the top and bottom surfaces of the cylinder will lie parallel to the electric field. Therefore, the angle between the area vector and the electric field would be 90° and cos θ = cos 90 = 0

Now, we know that according to Gauss Law,

Electric Flux, Φ = E•dA

Thus,

Total Φ = Φ_curved + Φ_top + Φ_bottom

Thus,

Φ = ∫E•dA cos 0 + ∫E•dA cos 90° + ∫E•dA cos 90°

We now have ;

Φ = ∫E . dA × 1

Since we are dealing with the radial component, the curved surface would be equidistant from the line of charge and the electric field in the surface will be the same magnitude throughout.

Thus,

Φ = ∫E•dA = E∫dA = E•2πrl

The net charge enclosed by the surface is given by:

q_net = λl

So using gauss theorem, we have;

Φ = E•2πrl = q_net/εo = λl/εo

E•2πrl = λl/ε0

Making E the subject, we obtain ;

E = λ/2πrε0

4 0
2 years ago
Permanent magnets consist of multiple _____
julsineya [31]

Answer: Permanent magnets consist of multiple "ferromagnetic materials" I think that might be the answer, there weren't really any choices for me to choose from.

3 0
2 years ago
A wheel rotating about a fixed axis has a constant angular acceleration of 4.0 rad/s2. In a 4.0-s interval the wheel turns throu
anastassius [24]

Answer:

a. 3 s.

Explanation:

Given;

angular acceleration of the wheel, α = 4 rad/s²

time of wheel rotation, t = 4 s

angle of rotation, θ = 80 radians

Apply the kinematic equation below,

\theta = \omega_1 t \ + \ \frac{1}{2} \alpha t^2\\\\80 = 4\omega_1 + \frac{1}{2}*4*4^2\\\\80 = 4\omega_1 + 32\\\\ 4\omega_1 = 48\\\\ \omega_1 = \frac{48}{4}\\\\ \omega_1 = 12 \ rad/s

Given initial angular velocity, ω₀ = 0

Apply the kinematic equation below;

\omega_1 = \omega_o + \alpha t_1\\\\12 = 0 + 4t\\\\4t = 12\\\\t = \frac{12}{4}\\\\t = 3 \ s

Therefore, the wheel had been in motion for 3 seconds.

a. 3 s.

8 0
2 years ago
How do you find the velocity after a collision
Evgen [1.6K]

Answer:

In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.

Explanation:

7 0
3 years ago
Other questions:
  • The California sea lion is capable of making extremely fast, tight turns while swimming underwater. In one study, scientists obs
    6·1 answer
  • An alert driver can apply the brakes fully in about 0.5 seconds. How far would the car travel if it
    8·1 answer
  • Which group of animals would be served best by the following adaptations?
    8·2 answers
  • According to Faraday, what is produced by a changing magnetic field?
    10·1 answer
  • If a 990 kg car is on the road and the Ff is 360 n what is the normal force
    5·2 answers
  • Cecily is inflating one of her bicycle tyres with the pump below. When she pushes the plunger down, does the volume of the gas i
    14·1 answer
  • Cassie is an engineering undergrad. She does not like talking much, and has become a quiet and withdrawn person while in her pro
    13·1 answer
  • Four distinguishable particles move freely in a room divided into octants (there are no actual partitions). Let the basic states
    6·1 answer
  • For years, the tallest tower in the United States was the Phoenix Shot Tower in Baltimore, Maryland. The shot tower was used fro
    5·1 answer
  • A hair dryer draws 11 A when it is connected to 120 V. If electrical energy costs $ 0.09/kW·h, what is the cost of using the hai
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!