<h2>Answer:</h2>
<u>Turning a magnet very quickly would be BEST used to create an electric current</u>
<h2>Explanation:</h2>
In Electromagnetic waves electric field produces magnetic field and vice versa. A moving magnet can produce electric current. Dynamo is the best example for it. In dynamo armature is rotated between the magnets which results in the development of electric field and hence an electric current is produced in it.
Answer:
True b and c
Explanation:
In an RLC circuit the impedance is
![Z = \sqrt{[R^{2} + ( (wL)^{2} + (\frac{1}{wC})^{2} ] }](https://tex.z-dn.net/?f=Z%20%3D%20%5Csqrt%7B%5BR%5E%7B2%7D%20%2B%20%28%20%28wL%29%5E%7B2%7D%20%2B%20%28%5Cfrac%7B1%7D%7BwC%7D%29%5E%7B2%7D%20%5D%20%20%20%20%20%7D)
examine the different phrases..
a) False. The maximum impedance is the value of the resistance
b) True. Resonance occurs when
(wL)² + (1 / wC)² = 0
w² = 1 / LC
c) True. In resonance the impedance is the resistive part and the power is maximum
d) False. In resonance the inductive and capacitive part cancel each other out
e) False. The impedance is always greater outside of resonance, but at the resonance point they are equal
<span>The correct answer should be B) 63.55. That's because the most precise number is 63.546, but you would write 55 because 46 is rounded that way in the equation. The others are a bit higher, while E is a completely different element, Iodine. This isn't the most precise piece of data because in reality there would be a slight differentiation of +- 0,003u</span>