Answer:
Led is a light-emitting diode, a semiconductor diode that glows when a voltage is applied. So, there is always a sure result of whether a substance conducts electricity or not as the light glows. That is why it is a better option for testing conduction of electricity.
Explanation:
Answer:
1. KCLO3------>KCL + 3/2O2(g)
2. 122.5g/mol
3. 0.2mol
4. 18.5g
Explanation:
As per Brønsted-Lowry concept of acids and bases, chemical species which donate proton are called Brønsted-Lowry acids.
The chemical species which accept proton are called Brønsted-Lowry base.
(a) 
is Bronsted lowry acid and
is its conjugate base.
is Bronsted lowry base and
is its conjugate acid.
(b)

is Bronsted lowry base and HCN is its conjugate acid.
is Bronsted lowry acid and
is its conjugate base.
(c)

is Bronsted lowry acid and
is its conjugate base.
Cl^- is Bronsted lowry base and HCl is its conjugate acid.
(d)

is Bronsted lowry acid and
is its conjugate base.
OH^- is Bronsted lowry base and
is its conjugate acid.
(e)

is Bronsted lowry base and OH- is its conjugate acid.
is Bronsted lowry acid and OH- is its conjugate base.
I think it’s the cell membrane if you’re talking about animal cells and plant cells.
Answer:
Final temperature = 83.1 °C
Explanation:
Given data:
Mass of concrete = 25 g
Specific heat capacity = 0.210 cal/g. °C
Initial temperature = 25°C
Calories gain = 305 cal
Final temperature = ?
Solution:
Q = m. c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
305 cal = 25 g ×0.210 cal/g.°C × T2 - 25°C
305 cal = 5.25cal/°C × T2 - 25°C
305 cal / 5.25cal/°C = T2 - 25°C
58.1 °C = T2 - 25°C
T2 = 58.1 °C + 25°C
T2 = 83.1 °C