It has to do with the releasing of ethylene, which speeds up the ripening process
pH=6.98
Explanation:
This is a very interesting question because it tests your understanding of what it means to have a dynamic equilibrium going on in solution.
As you know, pure water undergoes self-ionization to form hydronium ions, H3O+, and hydroxide anions, OH−.
2H2O(l]⇌H3O+(aq]+OH−(aq]→ very important!
At room temperature, the value of water's ionization constant, KW, is equal to 10−14. This means that you have
KW=[H3O+]⋅[OH−]=10−14
Since the concentrations of hydronium and hydroxide ions are equal for pure water, you will have
[H3O+]=√10−14=10−7M
The pH of pure water will thus be
pH=−log([H3O+])
pH=−log(10−7)=7
Now, let's assume that you're working with a 1.0-L solution of pure water and you add some 10
Answer:
66.67%
Explanation:
From the given information:
mass of cyclohexane = 2.9949 grams
density of cyclohexane = 0.779 g/mL
Recall that:
Density = mass/volume
∴
Volume = mass/density
So, the volume of cyclohexane = 2.9949 g/ 0.779 g/mL
= 3.8445 mL
Also,
mass of propylbenzene = 1.6575 grams
density of propylbenzene = 0.862 g/mL
Volume of propylbenzene = 1.6575 g/ 0.862 g/mL
= 1.9229 mL
The volume % composition of cyclohexane from the mixture is:



= 66.67%
Answer:
See Explanation
Explanation:
What Adi failed to realize is that the oily substance that was obtained from lavender consists of a mixture of substances. It is not only the required fragrance that is present in the extract.
This experiment will not work because those other components in the mixture may be erroneously identified when they show up in the mass spectrum of the extract and may be mistaken for the fragrance in question.
Hence the experiment will not work because; if some kind of separation method is not used to identify other impurities in the oil, many other substances may be mistaken for the actual fragrance.