Answer : The mass of oxygen formed must be 3.8 grams.
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
As we are given :
The mass of
= 25.3 grams
The mass of
= 23.4 grams
So,



Therefore, the mass of oxygen formed must be 3.8 grams.
Never mind, I did the problem wrong, I deeply apologize.
Answer:
2.04 mol
Explanation:
At STP, 1 mole = 22.4 L
45.6 L of H2 * (1 mole of H2 / 22.4 L ) = 2.04 mol
It is a bit like a video game because when you dumb it down, it's basically a small robotic thing that is controlled by a controller. In video games, you have an avatar being controlled inside a game using a gamepad, in surgery you have a little machine inside of a person's body being controlled using a computer.