<span>Boron has a lot of different isotopes, most of which having a very short half life (ranging from 770 milliseconds for Boron-8 down to 150 yoctoseconds for boron-7). But the two isotopes Boron-10 and Boron-11 are stable with about 80.1% of the naturally occurring boron being boron-11 and the remaining 19.9% being boron-10. The weighted average weight of those 2 isotopes has the value of 10.81.
The reason they use the average mass of an element for it's atomic weight is because elements in nature are rarely single isotopes. The weighted average allows us to easily compare relative number of atoms of one element against relative numbers of atoms of another element assuming that the experimenters are getting isotope ratios close to their natural ratios.</span>
Gain enough kinetic energy to get past each other. Ad you heat up a substance, the temperature increases as does the kinetic energy of the particles. At a point the temperature of the substance will stop increasing. The energy is now being used to increase the potential and move the particles further apart.
Answer:
Check the explanation
Explanation:
When,
pH = -log[H+] = 3.30
[H+] = 

![alpha[Y^-4] = [H+]^6 + Ka1[H+]^5 + Ka1Ka2[H+]^4 + Ka1Ka2Ka3[H+]^3 + Ka1Ka2Ka3Ka4[H+]^2 + Ka1Ka2Ka3Ka4Ka5[H+] + Ka1Ka2Ka3Ka4Ka5Ka6](https://tex.z-dn.net/?f=alpha%5BY%5E-4%5D%20%3D%20%5BH%2B%5D%5E6%20%2B%20Ka1%5BH%2B%5D%5E5%20%2B%20Ka1Ka2%5BH%2B%5D%5E4%20%2B%20Ka1Ka2Ka3%5BH%2B%5D%5E3%20%2B%20Ka1Ka2Ka3Ka4%5BH%2B%5D%5E2%20%2B%20Ka1Ka2Ka3Ka4Ka5%5BH%2B%5D%20%2B%20Ka1Ka2Ka3Ka4Ka5Ka6)
= 
= 
When,
pH = -log[H+] = 10.15
[H+] = 
Ka1 = 1 ; Ka2 = 0.0316 ; Ka3 = 0.01 ; Ka4 = 0.002 ; Ka5 =
; Ka6 = 
= 
= 
1kg is about 2.2 pounds. So 4kg = 8.8 pounds. If that represent 19% of the total, here is the answer.
0.19*x=8.8
x=8.8/0.19
x=46.31 pounds