Answer:
Option A - High frequency, short wavelength.
Explanation:
<em>If the sound is high then the frequency is also high but short-wavelength means lots of waves that always have a high pitch-sound and a high frequency. </em>
The standard formation equation for glucose C6H12O6(s) that corresponds to the standard enthalpy of formation or enthalpy change ΔH°f = -1273.3 kJ/mol is
C(s) + H2(g) + O2(g) → C6H12O6(s)
and the balanced chemical equation is
6C(s) + 6H2(g) + 3O2(g) → C6H12O6(s)
Using the equation for the standard enthalpy change of formation
ΔHoreaction = ∑ΔHof(products)−∑ΔHof(Reactants)
ΔHoreaction = ΔHfo[C6H12O6(s)] - {ΔHfo[C(s, graphite) + ΔHfo[H2(g)] + ΔHfo[O2(g)]}
C(s), H2(g), and O2(g) each have a standard enthalpy of formation equal to 0 since they are in their most stable forms:
ΔHoreaction = [1*-1273.3] - [(6*0) + (6*0) + (3*0)]
= -1273.3 - (0 + 0 + 0)
= -1273.3
Answer:
Height = 1.9493 cm
Width = 1.9493 cm
Depth = 1.9493 cm
Solution:
Data Given:
Mass = 20 g
Density = 2.7 g/mL
Step 1: Calculate the Volume,
As,
Density = Mass ÷ Volume
Or,
Volume = Mass ÷ Density
Putting values,
Volume = 20 g ÷ 2.7 g/mL
Volume = 7.407 mL or 7.407 cm³
Step 2: Calculate Dimensions of the Cube:
As we know,
Volume = length × width × depth
So, we will take the cube root of 7.407 cm³ which is 1.9493 cm.
Hence,
Volume = 1.9493 cm × 1.9493 cm × 1.9493 cm
Volume = 7.407 cm³
B............................................................................