Answer:
Reduce the friction at the surface
Explanation:
If you can reduce the friction between the load and the plane less effort will be required as you are not having to apply effort to overcome friction.
Answer:
The wave speed of the sound wave is 900
.
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The propagation velocity is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation: v = f * λ.
In this case:
Replacing:
v= 500 Hz* 1.8 m
v= 900 
<u><em>The wave speed of the sound wave is 900 </em></u>
<u><em>.</em></u>
The distance between Jupiter and the sun is 5.2 AU.
According to Kepler's third law, the square of the period of revolution of planets is proportional to the cube of their mean distances from the sun. From this; T^2 = r^3.
Now, we are told that the orbital period (T) is 11. 9 Earth years. We have to make the distance the subject of the formula.
r =T^2/3
r = (11.9)^2/3
r = 5.2 AU
Learn more: brainly.com/question/15207516
Answer:
amount of work done, W = 549.36 kJ
Given:
mass of a car engine, m = 2500 kg
initial velocity, u = 45 mph
final velocity, v = 65 mph
1 mile = 1609
Solution:
We know that 1 hour = 3600 s
Now, velocities in m/s are given as:
u = 45 mph =
= 20.11 m/s
v = 65 mph =
= 29.05 m/s
Now, the amount of work done, W is given by the change in kinetic energy of the car and is given by:
W = 
W = 
W = 
W = 549.36 kJ
Answer:
The electronic transition of an electron back to a lower energy level generates an emission spectrum.
Explanation:
The atomic emission spectrum¹ of an element has its origin when an electronic transition² occurs. An electron in an atom or ion³will absorb energy coming from a source and pass to a higher energy level, the electron, upon returning to its base state will emit a photon⁴ or a series of photons.
Hence, that leads to the formation of an emission spectrum.
Remember that an electron has energy levels in an atom or ion, at which each energy level has a specific value.
The energy values will differ from one element to another. So, it can be concluded that each element has a unique pattern of emission lines.
Key terms:
¹Spectrum: Decomposition of light in its characteristic colors.
²Electronic transition: When an electron passes from one energy level to another, either for the emission or absorption of a photon.
³Ion: An atom electrically charged due to the gain or loss of electrons.
⁴Photon: Elementary particle that constitutes light.