Isn't velocity Distance over time? if the degree isn't adding resistance it should be 4000 ÷ 20 which gives you 200mps ("per second") which is the velocity without resistance.
Answer:
5.3 cm
Explanation:
This question is an illustration of real and apparent distance.
From the question, we have the following given parameters
Real Distance, R = 8.0cm
Refractive Index, μ = 1.5
Required
Determine the apparent distance (A)
The relationship between R, A and μ is:
μ = R/A
i.e.
Refractive Index = Real Distance ÷ Apparent Distance
Substitute values in the above formula
1.5 = 8/A
Multiply both sides by A
1.5 * A = A * 8/A
1.5A = 8
Divide both side by 1.5
1.5A/1.5 = 8/1.5
A = 8/1.5
A = 5.3cm
Hence, the letters would appear at a distance of 5.3cm
<h2>
Answer: Earth's orbital path around the Sun</h2><h2>
</h2>
The <u>Ecliptic</u> refers to the orbit of the Earth around the Sun. Therefore, <u>for an observer on Earth it will be the apparent path of the Sun in the sky during the year, with respect to the "immobile background" of the other stars.</u>
<u />
It should be noted that the ecliptic plane (which is the same orbital plane of the Earth in its translation movement) is tilted with respect to the equator of the planet about
approximately. This is due to the inclination of the Earth's axis.
Hence, the correct option is Earth's orbital path around the Sun.
The distance a dropped object falls, with gravity and no air resistance:
Distance = (1/2) (acceleration) (falling time)²
Without air resistance, the horizontal motion has no effect on the fall.
Acceleration of Earth gravity = 9.8 m/s²
Distance = (1/2) (acceleration) (falling time)²
Distance = (1/2) (9.81 m/s²) (3.0 s)²
Distance = (0.5) x (9.81 m/s²) x (9.0 s²)
Distance = (0.5 x 9.81 x 9.0) (m-s² / s²)
Distance = 44.15 meters
We don't care how fast the bird was flying horizontally. It doesn't change anything. (It DOES determine how far ahead of the drop point the clam hits the ground. Most problems like this ask for that distance. This one didn't.)
Answer:
Because a person may be pulled in the direction of the moving train. Thereby causing accident
Explanation:
According to Daniel Bernoulli's theorem, he was widely known as a Mathematician. He stated that due to the higher velocity of a moving train, there is higher kinetic energy in terms of volume around it, while the air pressure between the person and the train becomes lower.
As a result, a person near a moving train may be pulled in the direction of the moving train. Thereby causing accidents that may lead to death.