1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
6

A 50-kg copper block initially at 140°c is dropped into an insulated tank that contains 90 l of water at 10°c. Determine the f

inal equilibrium temperature and the total entropy change for this process.
Physics
1 answer:
xxMikexx [17]3 years ago
6 0

Answer:

T_f=24.71

Explanation:

From the question we are told that:

Mass of block m=50

Temperature of block T_b =140 \textdegree C

Volume of water V= 90L

Temperature of water T_w=10 \textdegree C

Density of water \rho=1000kg/m^3

Specific heat of water C_w=4.18KJ/kg-k

Specific heat of copper C_p=0.96KJ/kg-k

 

Generally the equation for equilibrium stage is mathematically given by

mC_p(T_b-T_f)=\rho*VV*c(T_f-T_w)

50*0.96(140-T_f)=1000*90*10^-3*c_w(T_f-10)

48(140-T_f)=376.2(T_f-10)

140-T_f=7.8375(T_f-10)

140-T_f=7.8375T_f-78.375

-8.8375T_f=-218.375

T_f=\frac{-218.375}{-8.8375}

T_f=\frac{-218.375}{-8.8375}

T_f=24.71

You might be interested in
What is TeO3 compound name​
Stolb23 [73]

Tellurium trioxide

Hope this helps you!!!

4 0
3 years ago
Read 2 more answers
Waves can transfer energy through
lina2011 [118]

Answer:

electromagnetic waves

Explanation:

"wave" is a common term for a number different ways in which energy is transferred

3 0
3 years ago
Of the three forces acting on the rock as it slides down the bowl, which (if any) are constant and which are not? explain.
choli [55]

Answer

Hi,

The forces are; weight (gravity), Normal/centripetal force and friction. Force due to gravity is constant where as friction and centripetal are not.

Explanation

Weight is constant, given by the force of gravity on the object. The centripetal force is a function of the angles occurring between the velocity vector and the weight vector that is at right angle with the perpendicular line drawn from the surface. Friction is a function of the centripetal force thus it also varies.

Hope this helps!

6 0
4 years ago
it takes 90 j of work to stretch a spring 0.2 m from its equilibrium position. How muc work is needed to stretch it an additiona
Vinvika [58]

Work needed: 720 J

Explanation:

The work needed to stretch a spring is equal to the elastic potential energy stored in the spring when it is stretched, which is given by

E=\frac{1}{2}kx^2

where

k is the spring constant

x is the stretching of the spring from the equilibrium position

In this problem, we have

E = 90 J (work done to stretch the spring)

x = 0.2 m (stretching)

Therefore, the spring constant is

k=\frac{2E}{x^2}=\frac{2(90)}{(0.2)^2}=4500 N/m

Now we can find what is the work done to stretch the spring by an additional 0.4 m, that means to a total displacement of

x = 0.2 + 0.4 = 0.6 m

Substituting,

E'=\frac{1}{2}kx^2=\frac{1}{2}(4500)(0.6)^2=810 J

Therefore, the additional work needed is

\Delta E=E'-E=810-90=720 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

7 0
3 years ago
If you could shine a very powerful flashlight beam toward the Moon, estimate the diameter of the beam when it reaches the Moon.
grin007 [14]

To develop this problem it is necessary to apply the Rayleigh Criterion (Angular resolution)criterion. This conceptos describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution.  By definition is defined as:

\theta = 1.22\frac{\lambda}{d}

Where,

\lambda= Wavelength

d = Width of the slit

\theta= Angular resolution

Through the arc length we can find the radius, which would be given according to the length and angle previously described.

The radius of the beam on the moon is

r = l\theta

Relacing \theta

r = l(\frac{1.22\lambda}{d})

r = 1.22\frac{l\lambda}{d}

Replacing with our values we have that,

r = 1.22*(\frac{(384*10^3km)(\frac{1000m}{1km})(550*10^{-9}m)}{7*10^{{-2}}})

r = 3680.91m

Therefore the diameter of the beam on the moon is

d = 2r

d = 2 * (3690.91)

d = 7361.8285m

Hence, the diameter of the beam when it reaches the moon is 7361.82m

8 0
4 years ago
Other questions:
  • A man weighing 700 NN and a woman weighing 440 NN have the same momentum. What is the ratio of the man's kinetic energy KmKmK_m
    7·1 answer
  • A person lifts a 4.5 kg cement block a vertical distance of 1.2 m and then carries the block horizontal- ly a distance of 7.3 m.
    15·1 answer
  • Do
    7·1 answer
  • A shuffleboard disk is accelerated to a speed of 5.8 m/s and released. If the coefficient of kinetic friction between the disk a
    15·1 answer
  • PLZZ HELP <br> Explain how you can tell the difference between a physical and a chemical change.
    9·1 answer
  • What is also known as a ferromagnetism
    10·1 answer
  • A roller coaster car starts at 6 m/s at the top of the hill at the 3 seconds latter at the bottom of the hill the roller coaster
    11·1 answer
  • this is an area where two tectonic plates move towards each other with one going under the other plate?
    11·1 answer
  • The energy of a machine that is transformed into heat:
    13·1 answer
  • DeWayne meets a potential employer at a restaurant, who gives him a phone number. Because he doesn't have anything to write with
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!