<span>0.0292 moles of sucrose are available.
First, lookup the atomic weights of all involved elements
Atomic weight Carbon = 12.0107
Atomic weight Hydrogen = 1.00794
Atomic weight Oxygen = 15.999
Now calculate the molar mass of sucrose
12 * 12.0107 + 22 * 1.00794 + 11 * 15.999 = 342.29208 g/mol
Divide the mass of sucrose by its molar mass
10.0 g / 342.29208 g/mol = 0.029214816 mol
Finally, round the result to 3 significant figures, giving
0.0292 moles</span>
Speed in km/hr = 15 x 18
------------
5
= 54 km/hr.
Hope this helps!
Using PV=nRT or the ideal gas equation, we substitute n= 15.0 moles of gas, V= 3.00L, R equal to 0.0821 L atm/ mol K and T= 296.55 K and get P equal to 121.73 atm. The Van der waals equation is (P + n^2a/V^2)*(V-nb) = nRT. Substituting a=2.300L2⋅atm/mol2 and b=0.0430 L/mol, P is equal to 97.57 atm. The difference is <span>121.73 atm- 97.57 atm equal to 24.16 atm.</span>