<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then:
F = G(Mm / (4(pi)*r^2))
The above expression gives the force that you feel on the earth's surface, as it is today!
Let us now double the mass of the earth and decrease its diameter to half its original size.
This is the same as replacing M with 2M and r with r/2.
Now the gravitational force (F' ) on the new earth's surface is given by:
F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F
So:
F' = 8F
This implies that the force that you would feel pulling you down (your weight) would increase by 800%!
You would be 8 times heavier on this "new" earth!</span>
<span>We can use an equation to find the gravitational force exerted on the HST.
F = GMm / r^2
G is the gravitational constant
M is the mass of the Earth
m is the mass of the HST
r is the distance to the center of the Earth
This force F provides the centripetal force for the HST to move in a circle. The equation we use for circular motion is:
F = mv^2 / r
m is the mass of the HST
v is the tangential speed
r is the distance to the center of the Earth
Now we can equate these two equations to find v.
mv^2 / r = GMm / r^2
v^2 = GM / r
v = sqrt{GM / r }
v = sqrt{(6.67 x 10^{-11})(5.97 x 10^{24}) / 6,949,000 m}
v = 7570 m/s which is equal to 7.570 km/s
HST's tangential speed is 7570 m/s or 7.570 km/s</span>
Answer:
Young modulus = 9.8 × 10⁹ N/m²
Explanation:
From the information given:
Stress = F/A
Stress = (10 × 9.8) / 0.001²
Stress = 9.8× 10⁷ N/m²
Strain = increase in length / initial length of wire
Strain = 0.02/ 2
Strain = 0.01
Now;
The Young modulus (Y)= stress/strain
Young modulus = (9.8 × 10⁷ N/m²) / 0.01
Young modulus = 9.8 × 10⁹ N/m²
Answer:not as soon as possible,due to research made by Elon musk it's seems that's it's more cost full and rocket would be so giant,,also due to research made by biologist the effect of not be in gravity force for Long time (2 years)is not yet known