A meandering stream I think is a tall
Answer:
Explanation:
Since the surface is frictionless therefore there will be no friction force on block but there will be weight of block which we can divide in to two components i.e. mgcosθ &mgsinθ which is perpendicular and parallel to the surface respectively.
In response to mgcosθ ramp will apply a normal force to the block which will be of equal magnitude to that of mgcosθ.
Therefore Ramp will apply a Force of mgcosθ on block where m is the mass of block.
Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.
Answer:
"2Ω" is the net resistance in the circuit.
Explanation:
The given resistors are:
R1 = 3Ω
R2 = 6Ω
The net resistance will be:
⇒ 
On substituting the values, we get
⇒ 
On taking L.C.M, we get
⇒ 
⇒ 
⇒ 
On applying cross-multiplication, we get
⇒ 
Answer:
13 blocks
Explanation:
The total distance the student travels is 13 blocks.
Distance is the length of path covered during the motion of a body.
To find distance:
Total distance = Number of blocks to the west + number of blocks to the north + number of blocks to the east
Total distance = 3blocks + 4blocks + 6blocks = 13blocks