Increasing the mass attached to a spring will increase it's vibrational period - this is true. Imagine placing an elephant at the end of a bungee cord vs an apple, the apple will recoil faster than the elephant.
When the launch velocity is a bit less than the escape velocity, the satellite with time will find itself back to earth and when the speed is far beyond the escape velocity, the satellite with time, be lost in space.
The velocity of escape from the less massive Moon is about 2.4 km per second at its surface. ... A planet (or satellite) cannot long retain an atmosphere if the planet's escape velocity is low enough to be near the average velocity of the gas molecules making up the atmosphere.
Explanation:
The rod is uniform, so the center of gravity is at the center, or 0.75 m from the end. The wedge is 0.5 m from the end, so the center is 0.25 m from the wedge.
Sum the torques about the wedge (it may help to draw a diagram first). Take counterclockwise to be positive.
∑τ = Iα
W (0.25 m) − (100 N) (0.50 m) = 0
W = 200 N
Sum the forces in the y direction.
∑F = ma
F − 100 N − 200 N = 0
F = 300 N
Answer:
3.88m/s
Explanation:
Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and 2 are the initial velocities
v is the final velocity
Given
m1 = 64kg
u1 = 4.2m/s
m2 = 25kg
u2 = 3.2m/s
Required
Final velocity v
Substitute the given values into the formula
64(4.2)+25(3.2) = (65+25)v
268.8+80 = 90v
348.8 = 90v
v = 348.8/90
v = 3.88m/s
Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s
Using current technology, useful parallax measurements can only be found for stars up to about 340 light years (100 parsecs) away.